
Accelerated Quadratic Proxy for Geometric Optimization

Shahar Z. Kovalsky Meirav Galun Yaron Lipman
Weizmann Institute of Science

Abstract

We present the Accelerated Quadratic Proxy (AQP) - a simple first-
order algorithm for the optimization of geometric energies defined
over triangular and tetrahedral meshes.

The main stumbling block of current optimization techniques used
to minimize geometric energies over meshes is slow convergence
due to ill-conditioning of the energies at their minima. We observe
that this ill-conditioning is in large part due to a Laplacian-like
term existing in these energies. Consequently, we suggest to lo-
cally use a quadratic polynomial proxy, whose Hessian is taken to
be the Laplacian, in order to achieve a preconditioning effect. This
already improves stability and convergence, but more importantly
allows incorporating acceleration in an almost universal way, that
is independent of mesh size and of the specific energy considered.

Experiments with AQP show it is rather insensitive to mesh reso-
lution and requires a nearly constant number of iterations to con-
verge; this is in strong contrast to other popular optimization tech-
niques used today such as Accelerated Gradient Descent and Quasi-
Newton methods, e.g., L-BFGS. We have tested AQP for mesh de-
formation in 2D and 3D as well as for surface parameterization, and
found it to provide a considerable speedup over common baseline
techniques.

Keywords: optimization, first order methods, acceleration, pre-
conditioning, simplicial meshes, distortion, geometry

Concepts: •Computing methodologies → Mesh models;
•Mathematics of computing → Nonconvex optimization;

1 Introduction

Problems in computer graphics, including deformation and param-
eterization, often take the form of an optimization problem. Typ-
ically, these problems share a common structure – they are all de-
fined over tessellations of the domain (e.g., meshes) and aim at min-
imizing a geometric energy defined for each element and summed
over the tessellation. Nonetheless, generic off-the-shelf optimiza-
tion tools, which are generally used for their optimization, do not
explicitly exploit this structure.

The goal of this work is to take a first step in the direction of utiliz-
ing this structure, and introduce a simple first-order algorithm de-
signed for the optimization of geometric functionals over meshes.
In particular, we aim at an efficient, effective and scalable algo-
rithm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper,, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925920

(c)

iteration count

va
lu

e

(b)(a)

AQP
L-BFGS

0 500 1000 1500 2000

Figure 1: 2D deformation computed by minimizing the isometric
distortion energy, fISO. Our method (AQP) converges in just 105
iterations within 0.11 seconds. Top row shows an intermediate it-
eration of our method (a) and its final result (b). Bottom row shows
three iterations of an L-BFGS solver, which requires about 2300
iterations to converge. The rest-pose is shown at the top right.

The main pitfall encountered in the optimization of geometric en-
ergies over meshes is long convergence time. In second-order al-
gorithms, such as Newton’s algorithm, it is caused by the need to
compute and solve a linear system involving the full Hessian at each
iteration; in fact, second-order methods quickly become intractable
as problem size increases. Much more scalable are first-order meth-
ods such as Gradient Descent (GD) and L-BFGS, wherein each it-
eration uses only the energy and gradient evaluated at the current
and previous iterations. Although a single iteration is very effi-
cient computationally, convergence can still be slow. This often
happens as a result of ill-conditioning of the problem, leading an
off-the-shelf optimizer into making small steps at each iteration.
This problem intensifies as the mesh size increases, and in turn stan-
dard optimization techniques often become excruciatingly slow and
practically halt when optimizing large scale geometric problems.

Our first-order algorithm uses only objective (value) and gradient
information of the previous two iterations to determine its next step,

xn = Aθ (xn−1, xn−2) . (1)

This is similar to GD, which uses a single previous iteration, and
L-BFGS, which allocates memory for previous iterations according
to available resources.

We make two observations that enable us to devise an efficient al-
gorithm with improved convergence rate: first, geometric problems
commonly suffer from ill-conditioning dominated by a Laplacian-
like term in their energy. The effect of this term can be substan-
tially reduced by locally approximating the energy with a convex
quadratic proxy function whose Hessian is chosen to be the Lapla-
cian. This quadratic proxy can then be efficiently minimized, by uti-
lizing the fact that the Laplacian is a sparse constant matrix. There-
fore, each iteration only requires an efficient back-substitution with
sparse precomputed factors.

Second, the convergence rate of the algorithm can be significantly
improved by correctly balancing how it uses the information from
its two last iterations; this balance comes in the form of a parameter
θ in algorithm (1). This point of view is exactly the one advocated

http://dx.doi.org/10.1145/2897824.2925920

in acceleration (momentum) techniques, such as Nesterov’s Accel-
erated Gradient Descent (AGD) [Nesterov 1983; Beck and Teboulle
2009], and is adapted to fit our quadratic proxy framework.

These two observations in fact support each other. The convergence
analysis we perform suggests that the optimal acceleration param-
eter θ should be set according to the condition number associated
with the problem, which is problem dependent and typically un-
known. Nonetheless, the preconditioning effect achieved by using
our quadratic proxy leads to a nearly constant condition number.
Consequently, it enables setting this parameter in an almost uni-
versal way, that works well for different geometric energies and
extremely different mesh sizes, without the need to carefully tune.

We tested the performance of our algorithm on a variety of deforma-
tion and parameterization energies and on meshes of varying sizes,
overall observing a considerable speedup over standard, state-of-
the-art optimization techniques; for example, Figure 1 demonstrates
a speed-up of ×200 in optimizing an isometric distortion energy
in comparison to L-BFGS solver. Furthermore, our algorithm is
nearly scale-independent: the iteration count required for conver-
gence grows slowly (or remarkably remains constant for certain
problems) as mesh sizes increase.

2 Approach

Our goal is to devise an efficient algorithm for solving geometric
optimization problems taking the following form

min
x

f(x) (2a)

s.t. Ax = b (2b)

We see the variable x ∈ Rdn as representing the target d-
dimensional locations of n vertices of a triangular or tetrahedral
mesh; namely, x = vec (X) is the column stack of the vertex loca-
tion matrix X ∈ Rd×n. The linear equality constraints (2b) com-
monly represent positional constraints.

A key step of our approach is to decompose the energy functional
into

f(x) = h(x) + g(x), (3)

where h is a quadratic form h(x) = 1
2

xTHx that is strictly convex
subject to the constraint Ax = b; namely, the matrix H ∈ Rdn×dn
is strictly positive definite when restricted to the null-space of the
full-rank constraints matrix A.

In fact, many interesting problems in geometry processing natu-
rally admit such decomposition, with a quadratic term h that cor-
responds to the discrete Laplacian matrix L. For concreteness, we
demonstrate the proposed optimization framework on several use-
ful and popular energies: As-Rigid-As-Possible (ARAP) [Sorkine
and Alexa 2007; Liu et al. 2008; Chao et al. 2010], isometric dis-
tortion (ISO) [Smith and Schaefer 2015], and conformal distortion
(CONF) [Aigerman et al. 2015]. We decompose those as follows
(see Appendix A for additional details):

fARAP(x) =
1

2
xTHx−

∑
j

‖Tj‖∗ |tj |+ c0 (4)

fISO(x) =
1

2
xTHx +

1

2

∑
j

∥∥T−1
j

∥∥2
F
|tj | (5)

fCONF(x) =
1

2
xTHx +

1

2

∑
j

‖Tj‖2F

(
1

σd(Tj)2
− 1

)
|tj | (6)

where H = L ⊗ Id is a Kronecker product composed of copies
of the (positive semidefinite) Laplacian matrix acting on each coor-
dinate; ‖·‖F is the Frobenius norm; ‖·‖∗ is the nuclear norm, i.e.,

Algorithm 1: Accelerated Quadratic Proxy (AQP)
Data: feasible initialization x ; parameter η

x−1 = x0 = x ;

θ =
1−
√

1/η

1+
√

1/η
;

while not converged do
/* Acceleration */
yn = (1 + θ)xn−1 − θxn−2 ;

/* Quadratic proxy minimization */
pn = argminp h(yn + p) + g(yn) +∇g(yn)p

s.t. Ap = 0

/* Line search */
xn = linesearch 0<t≤1 f (yn + tpn)

the sum of (signed) singular values; Tj = Tj(x) is the differential
matrix of the j-th mesh element with respect to x; c0 is a constant;
and σd(Tj) is the smallest (signed) singular value of Tj(x). fARAP

and fISO are defined for triangular as well as tetrahedral meshes,
while the decomposition (6) for fCONF holds only for the case of
triangular meshes.

Algorithm. Our approach for solving problem (2) makes use of
this particular decomposition of f to devise an efficient first-order
optimization method that enjoys favorable convergence and scala-
bility properties. The proposed Accelerated Quadratic Proxy (AQP)
algorithm is very simple and is described in
Algorithm 1. It is an iterative algorithm pro-
ducing a sequence of approximations xn to
the optimal point x∗, wherein each iteration
comprises three intermediate steps: accel-
eration (yn), quadratic proxy minimization
(pn), and a line search from yn at the direc-
tion pn, producing the next approximation
xn; see the inset for an illustration.

Next, we describe each of the steps of the AQP algorithm. There-
after, in section 3 we provide background on related optimization
approaches, and in section 4 an analysis of the algorithm, further
motivating its specific design.

Acceleration. The acceleration step takes an affine combination of
the two previous iterations with a constant θ > 0 to produce an
intermediate guess yn. The value of θ is defined in terms of a pa-
rameter η > 0, whose role and selection are to be discussed in
Section 4.

Quadratic proxy minimization. A surrogate convex quadratic func-
tion is minimized to provide a descent direction pn with respect to
yn. This is done by solving the following linear KKT system,[

H AT

A 0

] [
pn
λ

]
=

[
−∇f(yn)

0

]
. (7)

Note that the left-hand side of this linear system is invertible, as H
is strictly positive definite on the null-space of A. Moreover, it is
constant and thus can be prefactorized once in preprocessing (e.g.,
using an LU decomposition). The solution of (7), therefore, boils
down to an efficient back-substitution, typically with highly sparse
factors (as is the Laplacian matrix).

Line search: Lastly, line search is used to produce the next iteration
xn. It searches for 0 < t ≤ 1 such that xn = yn + tpn sufficiently
reduces the energy. In our implementation we use a standard back-
tracking algorithm (Algorithm 3.1 in [Nocedal and Wright 2006]).

Note that: (1) the algorithm presented above only requires evaluat-
ing the energy value f and gradient ∇f . Thus, it may be used for
a variety of geometric energies other than (4)-(6), even without an
explicit decomposition; and (2) for barrier-type energies feasibility
is guaranteed by restricting the step size as detailed in Section 5.3.

3 Related work

Optimization. Algorithm 1 falls into the scope of the highly ac-
tive field of first order optimization methods. Next, we discuss op-
timization approaches that are related to the proposed algorithm.

Newton methods. Newton’s method is one of the most well-known
and effective optimization techniques [Nocedal and Wright 2006].
In the context of linearly constrained optimization of the form (2),
Newton’s method relies on the iterative solution of a linear KKT
system of the form

[
∇2f(yn) AT

A 0

] [
pn

λ

]
=

[
−∇f(yn)

0

]
.

Consequently, its main drawback is that each iteration requires
computing and storing the Hessian as well as solving a linear sys-
tem with varying left-hand side (unlike in our system, Equation (7)),
both may become computationally prohibitive as the problem size
increases. Figure 2 demonstrates the performance of Newton’s
method for the minimization of the isometric distortion energy fISO
on a refined version of the example shown in Figure 1.

Quasi-Newton algorithms, such as BFGS and its limited memory
version, L-BFGS, provide an alternative to Newton’s method that
reduces the computational costs and/or memory footprint but share
many of its advantages [Nocedal and Wright 2006]. Although each
quasi-Newton iteration is typically less effective than Newton’s, its
computational efficiency made it a popular choice for generic non-
linear optimization. We consider L-BFGS as a baseline algorithm
and compare to it extensively throughout the paper.

Proximal methods. More recently, proximal algorithms have be-
come increasingly popular for both convex and non-convex opti-
mization, see [Combettes and Pesquet 2011] and [Parikh and Boyd
2014] for comprehensive surveys. The key component of these
methods is the proximal mapping operator, which can be seen as a
generalization of the set projection operator to functions. Proximal
splitting methods, like our algorithm, take advantage of a decom-
position of the functional f = h+ g; wherein typically g is smooth
and h is proximable, i.e., its proximal map can be efficiently com-
puted. For our decomposition (3), with h(x) = 1

2
xTHx, a step of

the proximal gradient method, also known as the proximal forward-
backward algorithm, boils down to solving the following linear sys-
tem [

H + 1
t
I AT

A 0

] [
pn

λ

]
=

[
−∇f(yn)

0

]
, (8)

where t is a proximal parameter related to step size. Despite its
resemblance to our quadratic proxy step, Equation (7), there are
several substantial differences worth noting: The proximal gradient
system, Equation (8), depends on the parameter t and thus can-
not be trivially prefactorized as (7) in our algorithm. Moreover,
proximal gradient with line search typically requires computing ad-
ditional solutions of the linear system (8), one for each value of t
to be tested in backtracking [Beck and Teboulle 2009; Parikh and
Boyd 2014; Ochs et al. 2014]. A few approaches, e.g., [Lee et al.
2012], mitigate this requirement by performing a linear line search
after solving the above linear system. Our algorithm solves the
prefactorized system (7) only once per iteration, then requires only
simple energy evaluations in its line search. Lastly, for small values
of the proximal parameter t, Equation (8) essentially computes a

iteration count
0 1000 2000 3000

va
lu

e
[lo

g]

AQP
QP
ProximalGrad
Newton

time (sec)
0 2 4 6 8 10

va
lu

e
[lo

g]

(a) (b)

Figure 2: Related optimization methods. Comparing our algo-
rithm (AQP), its non-accelerated version (QP), the proximal gradi-
ent method (ProximalGrad) and Newton’s method. Newton is most
effective in terms of iteration count, as seen in (a); however, its it-
erations are inefficient as seen in (b). Our first order approach is
both effective and efficient.

gradient descent step, potentially leading to an inferior convergence
behavior. As Figure 2 demonstrates, these differences may result in
deterioration of performance in comparison to Algorithm 1.

Preconditioning. Our choice of using a fixed quadratic proxy, lead-
ing to Equation (7) can be interpreted as choosing the Laplacian
as a problem-dependent preconditioner for geometric energies over
meshes. Preconditioning is a well known in scientific comput-
ing [Saad and Van Der Vorst 2000], and related ideas have appeared,
for example, in computational physics [Farago and Karatson 2008;
Tuckerman 2015] and simulation [Baraff and Witkin 1998; Wardet-
zky et al. 2007; Liu et al. 2013]. However, to the best of our knowl-
edge, Laplacian preconditioning has not been previously employed
for optimization in geometry processing.

Acceleration. The idea of using an affine combination of current
and previous iterations to achieve acceleration dates back to Polyak
[Polyak 1964] and Nesterov [Nesterov 1983]. Their acceleration
techniques were later generalized to proximal convex optimiza-
tion [Beck and Teboulle 2009] as well as non-convex optimiza-
tion [Ochs et al. 2014; Li and Lin 2015]. The convergence analysis
we present in Section 4 suggests that the acceleration and quadratic
proxy minimization steps of Algorithm 1 are not decoupled and in
fact support one another; the effect of preconditioning introduced
by our quadratic proxy enables setting the acceleration parameter
in an almost universal way.

Geometric optimization. Optimization of geometric energies is
a central theme in computer graphics in general and geometry pro-
cessing in particular.

Deformation. Deformation algorithms often model the deformation
problem as an energy minimization problem; the energy could be
physically [Terzopoulos and Fleischer 1988; Grinspun et al. 2003]
or geometrically inspired [Botsch and Sorkine 2008]. As-Rigid-
As-Possible (ARAP) approaches [Sorkine and Alexa 2007; Chao
et al. 2010] minimize the local deviation from rigidity. They are
often optimized using the global-local interleaving procedure [Liu
et al. 2008] or by using higher order methods, such as Newton
[Chao et al. 2010] or Gauss-Newton [Huang et al. 2009]. The lat-
ter, higher-order methods, solve a different linear system in each
iteration and therefore scale poorly with problem size. Minimizing
the ARAP energy does not prevent element flips or degeneration.
This has been partly mitigated with the introduction of energy bar-
riers [Schüller et al. 2013] as well as per-element constraints [Ko-
valsky et al. 2014]; these approaches, however, employ computa-
tionally demanding Newton-based interior point methods. Practical
deformation algorithms often use multigrid, hierarchical structure
[Botsch et al. 2006] or a subspace to reduce the number of degrees
of freedom [Huang et al. 2006; Ben-Chen et al. 2009; Hildebrandt
et al. 2011; Wang et al. 2015].

Parameterization. Similarly to deformations, Parameterization al-
gorithms aim at minimizing an energy measuring the distortion of
the mapping [Floater and Hormann 2005; Sheffer et al. 2006]. Pa-
rameterization algorithms differ in the energy they attempt to mini-
mize as well as in algorithm they use for its optimization. As linear
energies [Lévy et al. 2002; Desbrun et al. 2002] generally cannot
avoid flipped elements, many papers focus on non-linear energies
[Degener et al. 2003]; MIPS [Hormann and Greiner 2000] uses a
non-linear energy that explodes for flipped elements and optimizes
one vertex at a time; [Fu et al. 2015] improve this optimization by
simultaneously moving groups of vertices using block gradient de-
scent; [Smith and Schaefer 2015] suggest using L-BFGS incorpo-
rated with a restricted line search to avoid flipped elements during
the optimization.

Relation to global-local. It is insightful to note that the non-
accelerated version of Algorithm 1 (QP) reduces to the global-
local algorithm [Liu et al. 2008] for the case of the As-Rigid-As-
Possible energy (4). This follows by noting that plugging the gra-
dient∇fARAP into Equation (7) reduces to the “global” step in the
global-local algorithm, where the “local” step is incorporated in the
computation of∇fARAP; full details are provided in Appendix B.

4 Algorithm analysis

In this section we provide a local analysis to Algorithm 1, explain-
ing its favorable convergence properties; specifically, we explain
the roles of the acceleration and the quadratic proxy.

For the analysis of Algorithm 1, let x∗ denote a strict local mini-
mum of f(x) satisfying Ax∗ = b, and set en = xn − x∗ to be
the error vector between xn, the state of the algorithm at its n-th
iteration, and the optimal solution. Analyzing the convergence rate
of the algorithm amounts to bounding the error size ‖en‖. As we
derive next, this can be done by showing that the error sequence
{en} satisfies a certain recurrence relation.

We begin by writing the second order expansion of f(x) at x∗ in
the following form

f(x) =

h(x)︷ ︸︸ ︷
1

2
xTHx+

g(x)︷ ︸︸ ︷
1

2
xTGx + aT x + d + ε, (9)

where G = ∇2g(x∗), and ε = O(‖x− x∗‖3). In what follows,
we make the assumption that ε is negligible. This assumption sim-
plifies our analysis, and still well captures the behavior of the algo-
rithm in the vicinity of the strict local minima x∗; this stems from
the observation that every sufficiently smooth function can be well
approximated by convex quadratic polynomials in the vicinity of
its strict local minima. The analysis for the general case follows
similar principles but remains outside the scope of this work.

Let K be a matrix whose columns form an orthonormal basis to
the null-space of A. Under the above assumptions we have the
following lemma, characterizing the error sequence in the vicinity
of the optimal point x∗:
Lemma 1. The error sequence en = xn − x∗ produced by Algo-
rithm 1 satisfies the following recurrence relation:

KT en =M
[
(1 + θ)KT en−1 − θKT en−2

]
, (10)

where θ > 0 and M is the iteration matrix:

M = I − tQ ; Q = (KTHK)−1(KT (H +G)K). (11)

The proof of Lemma 1 is given in Appendix C. Lemma 1 implies
that the local convergence properties of Algorithm 1 depend on two

factors: (1) the value of the scalar θ; and (2) the spectral radius
of the matrix M , i.e., the maximal magnitude of its eigenvalues.
These, in fact, correspond to two of the key steps of Algorithm 1:
the acceleration and the quadratic proxy minimization. We will next
discuss the role of these steps in reducing the error sequence.

4.1 Acceleration

We begin with discussing the generalization of the notion of ac-
celeration [Nesterov 1983] to our novel quadratic proxy setup. The
following lemma, proved in Appendix C (in similar spirit to [Polyak
1964]), provides intuition on how to choose the parameter θ in (10)
to achieve optimal convergence rate (under the assumptions speci-
fied above):
Lemma 2. Let M ∈ Rp×p be a diagonalizable matrix, not nec-
essarily symmetric, with positive eigenvalues and spectral radius
ρ = ρ(M) < 1. Let zn be a series defined by the recurrence rela-
tion

zn =M [(1 + θ)zn−1 − θzn−2] . (12)

Then, the series zn satisfies

1. ‖zn‖ ≤ c1ρn, for θ = 0.

2. ‖zn‖ ≤ c2(1−
√
1− ρ)n, for θ= θacc=

2
ρ

(
1−
√
1− ρ

)
−1

where c1, c2 > 0 are constants. Furthermore, the latter provides
an optimal choice θ = θacc leading to an optimal convergence rate.

This lemma is concerned with a one-parameter (θ) family of recur-
rence relations. It identifies two special choices of θ: For θ = 0
(i.e., without acceleration) the convergence rate of the series zn to
zero is ρ, the spectral radius of the iteration matrix M . However,
the lemma also asserts that with the same iteration matrix M there
is a better choice of θ: for θacc = 2

ρ

(
1−
√
1− ρ

)
− 1 the con-

vergence rate is 1 −
√
1− ρ, which is considerably smaller (i.e.,

better) than ρ.

According to (10) the error sequence of our algorithm is exactly of
the form (12) with zn = KT en. Therefore, with the choice θacc,
the error sequence of Algorithm 1 satisfies

‖en‖ = ‖KT en‖ ≤ c(1−
√

1− ρ)n, (13)

where c > 0 is a constant and ρ is the spectral radius of the iteration
matrix M in (11). The first equality is due to the fact that en ∈
kerA and the columns of K form an orthonormal basis to kerA.

4.2 Quadratic proxy

The convergence rate of the algorithm depends on the spectral ra-
dius ρ of the iteration matrix M ; as can be observed from (13) –
faster convergence is attained for smaller ρ.

By our assumption, x∗ is a strict local minimum and therefore
H +G � 0. In turn, Q as defined in (11) is diagonalizable with
positive eigenvalues; let λ1 ≥ . . . ≥ λp > 0 denote its eigenval-
ues. The iteration matrix M is therefore also diagonalizable with
real spectrum contained within [1 − tλ1, 1 − tλp] ⊂ (−∞, 1).
Choosing a constant step size t = λ−1

1 yields an iteration matrix
M that satisfies the conditions required in Lemma 2; in particular,
its spectral radius is ρ = 1 − κ−1, where κ = κ(Q) = λ1/λp
is the condition number of Q. Hence, we can summarize with the
following lemma:
Lemma 3. There exists a constant step size t for which the spectral
radius of the iteration matrix M in (10) is ρ(M) = 1 − κ−1, with
κ = κ(Q) the condition number of Q.

Plugging ρ = ρ(M) into the expression of θacc of Lemma 2 yields

θacc =
2

ρ

(
1−

√
1− ρ

)
− 1 =

1−
√
κ−1

1 +
√
κ−1

,

which is exactly the choice of θ used in Algorithm 1. Moreover,
note the this simple derivation recovers an acceleration coefficient
closely related to coefficient sequence used in Nesterov accelerated
methods (e.g., [Nesterov 1983; Beck and Teboulle 2009]).

The following theorem summarizes our convergence result, under
the assumption of a convex quadratic approximation at the vicinity
of a strict local minimum:
Theorem 1. With the parameter choice η = κ(Q), Algorithm 1
has an error sequence {en} that decays according to

‖en‖ ≤ c(1−
√
κ−1)n.

This theorem implies faster convergence is to be expected if Q is
better conditioned. At the same time, Equation (11) suggests that
the effect of the quadratic proxy h(x) is that of using H as a pre-
conditioner for Q.

This observation motivates our choice h(x) = xT (L⊗ Id) x for
geometric functionals; the Laplacian L typically has a condition
number of scale δ−2 when discretized over a grid of element size
δ [Iserles 2009]. This suggests that for large meshes cancelling the
Dirichlet part of the energy has potential for considerably improv-
ing the condition number of the matrix Q, and hence convergence.

5 Evaluation

In this section we empirically study the specific choices made in
the design of Algorithm 1 as well as demonstrate its performance
in comparison with baseline solvers.

5.1 The role of acceleration and quadratic proxy

Two of the principal steps of the AQP algorithm are the acceler-
ation step and the quadratic proxy minimization step. In a previ-
ous section we have argued that these step support each other. In
order to demonstrate this, we have evaluated the algorithm perfor-
mance when each of these steps is skipped. Figure 3(a) shows the
number of iterations required for minimizing the isometric distor-
tion energy, fISO, as a function of problem size. Our algorithm is
compared to Quadratic Proxy (QP) in which the acceleration is dis-
abled, i.e., θ = 0; and Accelerated Gradient Descent (AGD) which
amounts to disabling our Laplacian-based quadratic proxy, i.e., set
H = I in Eq. (7). Clearly, AQP outperforms both AGD and QP.

To further demonstrate the role of the quadratic proxy as a pre-
conditioner for Q, we have (numerically) estimated its condition
number. Figure 3(b) compares the condition number of Q =
(KTHK)−1(KT (H+G)K), as defined by Equation (11), to that
ofQGD = KT (H+G)K. The latter corresponds to the iteration of
a standard gradient descent algorithm; in particular, note that QGD

corresponds to an iteration of Algorithm 1 with H = I in Eq. (7).
We have computedQ andQGD by estimating the HessianH+G at
the vicinity of a local minimum for problems of increasing size. As
can be seen in this graph κ(QGD) grows much more rapidly with
problem size in comparison to κ(Q); thus, suggesting the advan-
tage of using our Laplacian-based quadratic proxy for the solution
of large scale problems.

Figure 3: The role of acceleration and quadratic proxy. (a) shows
the iteration count of our approach (AQP) when disabling either the
acceleration (QP) or quadratic proxy (AGD); this is in agreement
with the analysis, arguing that the acceleration and quadratic proxy
minimization steps are intertwined. (b) shows the condition num-
ber of Q which dominates the convergence rate of the algorithm;
it demonstrates the preconditioning effect of our quadratic proxy,
κ(Q), compared with the condition number κ(QGD) obtained by a
standard gradient descent step.

5.2 Comparison with standard approaches

Figure 4 compares the performance of Algorithm 1 with that of
generic first-order methods. Each experiment compares our al-
gorithm with Accelerated Gradient Descent (AGD) and L-BFGS
quasi-Newton algorithms. For comparability, we manually tuned
the acceleration parameter of the AGD for each problem, to maxi-
mize its performance.

All algorithms were applied on a set of 2- and 3-dimensional prob-
lems, for the minimization of the As-Rigid-As-Possible and isomet-
ric distortion energies, fARAP and fISO, respectively. Each exper-
iment evaluated both the number of iterations and the runtime until
convergence; the former indicates the effectiveness of each iteration
in reducing the functional, while the latter also takes into account
the computational efficiency of each iteration. Instances for which
the iteration count exceeded 105 were omitted from the evaluation.

Clearly, our AQP algorithm outperforms both the L-BFGS and
AGD. Expectedly, the AGD scales poorly with problem size, as the
energies to be minimized become severely ill-conditioned; L-BFGS
partially addresses this by employing Hessian approximations for
the computation of a search direction; our approach, however, ex-
plicitly leverages the energy decomposition of Equations (4) and (5)
to gain a substantial performance boost. Notably, in many of the
examples, the number of iteration AQP requires until convergence
grows only moderately with problem size, in some of the cases re-
maining close to constant.

5.3 Implementation details

In our evaluations and experiments Algorithm 1 was implemented
in MATLAB; functional and gradient evaluations were imple-
mented as a sequential single-thread C function; we used an Intel
Xeon 2.40GHz CPU. Our algorithm has a single tunable parameter
η, which we have set to either 100 or 1000 in all evaluations and
experiments. In comparisons with L-BFGS we have used the im-
plementation provided with MATLAB’s optimization toolbox. For
parameterization we use the implementation provided by [Smith
and Schaefer 2015], see Section 6.2 for additional details.

number of elements (x104)
1 2 3 4

ru
n

tim
e

(s
ec

)

100

102

number of elements (x104)
1 2 3 4

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ru
n

tim
e

(s
ec

)

100

102

number of elements (x104)
1 2 3 4

ru
n

tim
e

(s
ec

)

100

102

number of elements (x104)
1 2 3 4

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ru
n

tim
e

(s
ec

)

100

102

number of elements (x104)
1 2 3 4

ru
n

tim
e

(s
ec

)

100

102

number of elements (x104)
1 2 3 4

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ite
ra

tio
n

co
un

t

102

103

number of elements (x104)
2 4 6 8 10

ru
n

tim
e

(s
ec

)

100

102

number of elements (x10 4)
1 2 3 4

ite
ra

tio
n

co
un

t

102

103

number of elements (x10 4)
1 2 3 4

ru
n

tim
e

(s
ec

)

100

102

number of elements (x10 4)
2 4 6 8 10

ru
n

tim
e

(s
ec

)

100

102

number of elements (x10 4)
2 4 6 8 10

ite
ra

tio
n

co
un

t

102

103

2D 3D

AQP
AGD
L-BFGS

Figure 4: Comparison with standard first-order methods. Our algorithm (AQP) is compared with Accelerated Gradient Descent (AGD) and
L-BFGS on a set of 2- and 3-dimensional problems; the insets show representative instances. Each experiment measures the iteration count
and runtime of each solver for various scales of the same problem, indicating their effectiveness and computational efficiency. The AQP
algorithm explicitly leverages the underlying geometry of the energies to achieve substantially improved performance.

For the minimization of the isometric and conformal distortion en-
ergies, fISO and fCONF we have adopted the barrier criterion pro-
posed in [Smith and Schaefer 2015] for determining a maximal
feasible step. Namely, let tmax (z, u) denote the maximal feasible
step size at z in the direction u, as defined in [Smith and Schaefer
2015]. We employ their criterion in two different parts of the Algo-
rithm 1: (1) In the acceleration step we set yn = (1 + θ′)xn−1 −
θ′xn−2 where θ′ = min

{
θ, 1

2
tmax (xn−1, xn−1 − xn−2)

}
; and

(2) in the line search part we set the maximal step size to be
min

{
1, 1

2
tmax (yn, pn)

}
. Lastly, using this criterion requires an

orientation preserving initialization, which was computed with the
code of [Kovalsky et al. 2015].

6 Experiments

6.1 Deformation

In this experiment we show the utility of the proposed approach for
computing deformations of triangular and tetrahedral meshes.

2-dimensional deformations. Figure 5 shows the result of min-
imizing the As-Rigid-As-Possible energy, fARAP, for the deforma-
tion of a triangular mesh comprising 8k triangles. The performance
of our approach is compared with that of the local-global algorithm
[Liu et al. 2008], popularly used for the minimization of this en-
ergy. Our algorithm terminates much faster than the global-local

approach, after 0.38 seconds compared to 1.55 seconds. Moreover,
a near optimal result, often sufficient for interactive modeling, is
achieved even faster, after less than 0.1 second.

A more robust approach (i.e., resisting flips) for computing defor-
mations is to minimize the isometric distortion energy fISO. Fig-
ure 6 shows the result of minimizing the isometric distortion energy
for the same problem shown in Figure 5. Our algorithm converges
in 0.81 seconds, and its result is guaranteed to be non-degenerate
and orientation preserving (see [Smith and Schaefer 2015]). This is
compared to 36 seconds it take the L-BFGS to terminate.

Another example of a 2D deformation obtained by minimizing the
isometric distortion energy is presented in Figure 1; this example
demonstrates a speedup by a factor of 200 over a standard L-BFGS
solver. Lastly, as a stress test, Figure 7 presents the solution of the
same problem starting with an extreme initialization, demonstrating
the robustness of the algorithm.

3-dimensional deformations. Figures 9 and 11 show the result
of employing our approach for deforming volumetric tetrahedral
meshes, obtained by tetrahedralizing surfaces taken from [Sacht
et al. 2015] using TetGen [Si 2015]. The figures present the re-
sults of minimizing the As-Rigid-As-Possible energy fARAP and
isometric distortion energy fISO, respectively. The latter, as before,
is guaranteed to produce a non-degenerate and orientation preserv-
ing volumetric deformation.

iteration count
0 200 400 600

va
lu

e
[lo

g]

AQP
Global-Local

time (sec)
0 0.5 1 1.5

va
lu

e
[lo

g]

(a)

(b)

(b) (c)

(c)

Figure 5: As-Rigid-As-Possible 2D deformation. The rest pose is
shown in (a). (b) and (c) compare intermediate iterations of our
approach and an alternating global-local algorithm. In (b) our al-
gorithm almost converges while global-local lags behind. In (c),
after 0.38 seconds, our algorithm converges while global local re-
quires 1.55 seconds to terminate.

time (sec)
0 10 20 30

va
lu

e
[lo

g]

iteration count
200 400 600 800

va
lu

e
[lo

g]

AQP
L-BFGS

(b) (c)(a)

(b) (c)

Figure 6: 2D deformation attained by minimizing the isometric
distortion energy fISO. The rest pose is shown in (a). (b) and (c)
compare intermediate iterations of our approach and an L-BFGS
solver. In (b) our algorithm almost converges while the L-BFGS
lags significantly behind. In (c), after 0.81 seconds, our algorithm
converges while L-BFGS requires over 36 seconds to terminate.

Figure 7: 2D deformation – robustness of the algorithm. Minimiza-
tion of the isometric distortion energy fISO subject to an extreme
initialization (left). Our algorithm converges (right) after 174 iter-
ations within 0.27 seconds.

(a) (b)

Figure 8: Parameterization of Hand and Gorilla models, compris-
ing 390k and 200k triangles, respectively. In (a) our algorithm is
used to minimize the isometric distortion energy, fISO, terminating
after 333 and 41 seconds, respectively. (b) presents the result of
minimizing the conformal distortion, fCONF, obtained in 388 and
105 seconds, respectively. Colors depict energy distributions.

Interactive computation rates. As demonstrated above, our al-
gorithm enjoys preferable convergence properties; it terminates ear-
lier, both in iteration count and runtime, compared to standard base-
line approaches. Moreover, it attains near optimal results in a small
number of iterations – in many cases, providing visually pleasing
results.

This makes the proposed approach particularly adequate for incor-
porating into applications requiring interactive computation rates.
Figure 10 demonstrates a standard subspace approach for deforma-
tion computation [Huang et al. 2006; Wang et al. 2015]: a low res-
olution volumetric tetrahedral mesh is deformed, in turn inducing a
deformation on an encaged high resolution surface. (For this exam-
ple we used a naive piecewise linear interpolation, i.e., barycentric
coordinates, however, any linear or non-linear subspace method can
be used instead [Ju et al. 2005; Wang et al. 2015].)

6.2 Parameterization

Our AQP algorithm can be straightforwardly used for computing
surface parameterizations. We have experimented with parameter-
izations computed by minimizing the isometric and conformal dis-
tortion energies, fISO and fCONF, respectively.

Figure 8 demonstrates the parameterization of two high resolution
surfaces obtained using our algorithm. Tutte’s embedding [Tutte
1963] to the unit disk was used to compute a feasible (bijective)
initial parameterization.

In Figure 12 we compare the performance of our approach to the
limited-memory BFGS method adopted by [Smith and Schaefer
2015] for the minimization of the isometric distortion energy, fISO.
Both algorithms produce essentially identical results, however, our
requires a smaller number of iterations and lower runtime to con-
verge. A significant speedup, in a factor of about ×9, can be ob-
served for the higher resolution (Horse) example.

We use the implementation of Smith and Schaefer [2015]. For com-
parability with our single thread implementation, we also configure
their code to use a single core computation, thus its performance is
slightly inferior to that reported in their paper. The same multicore
strategy used in their code for the computation of gradients can be
straightforwardly adopted for our algorithm, thus achieving similar
speedup.

iteration count
0 50 100 150

fu
nc

tio
na

l v
al

ue AQP
Global-Local

time (sec)
0 20 40 60

fu
nc

tio
na

l v
al

ue

iteration count
0 50 100

fu
nc

tio
na

l v
al

ue

time (sec)
0 2 4 6

fu
nc

tio
na

l v
al

ue

Figure 9: As-Rigid-As-Possible 3D volumetric deformation of a
high-resolution mesh (top – 285k tets) and a low-resolution mesh
(bottom – 37k tets). The insets show the rest poses of the tetrahe-
dral meshes. The proposed approach terminates approximately 3×
faster than the global-local alternating approach; it also achieves
near optimal results significantly sooner.

Figure 10: Deformation subspaces. A low resolution tetrahedral
mesh (blue) is deformed (Figures 9 and 11), in turn, inducing a de-
formation on an encaged high resolution surface. Computation of
the boy’s deformation (left) is completed in 2.6 seconds, by mini-
mizing the As-Rigid-As-Possible energy for a 37k tets control cage.
The horse’s deformation (right) is computed by minimizing the iso-
metric distortion energy of a control cage comprising 2k tets in 0.28
seconds; in this case, the deformation of the encapsulating volume
is guaranteed to be non-degenerate and orientation preserving.

7 Concluding remarks

We presented the Accelerated Quadratic Proxy algorithm - a sim-
ple first-order algorithm for optimizing geometric functionals de-
fined over triangular and tetrahedral meshes. Our method utilizes
the common structure of optimization problems over meshes to im-
prove iteration efficiency and incorporate acceleration in an almost
universal way (i.e., insensitive to different energy types and mesh-
sizes).

iteration count
0 200 400 600 800

fu
nc

tio
na

l v
al

ue AQP
L-BFGS

time (sec)
0 1000 2000 3000

fu
nc

tio
na

l v
al

ue

time (sec)
0 2 4 6

fu
nc

tio
na

l v
al

ue

iteration count
100 200 300 400 500 600

fu
nc

tio
na

l v
al

ue AQP
L-BFGS

Figure 11: 3D tetrahedral deformation attained by minimizing the
isometric distortion energy fISO. Deformation of meshes compris-
ing 630k and 2k tets are shown in the top and bottom, respectively;
rest poses shown in the insets. The proposed approach converges
significantly faster than L-BFGS. Notably, the resulting deforma-
tions are guaranteed to be without flips and non-degenerate.

Currently, our line-search algorithm is rather naive and often re-
quires many function evaluation to perform a descent step. Incorpo-
rating more sophisticated line-search strategy is expected to further
improve performance. Improving our current MATLAB implemen-
tation is also likely to gain a significant speedup.

We have tested our algorithm on three popular energies; a very in-
teresting future research direction is exploring how the algorithm
behaves for other energies. A limitation of our approach is that we
do not have a principled way of determining how effective the de-
composition h + g is for an arbitrary energy; specifically, how the
conditioning of the matrix Q in (11) is improved. Numerical exper-
iments provide a partial answer, however being able to theoretically
bound κ(Q) would provide a powerful theoretical justification for
the algorithm.

Lastly, we would like to apply this algorithm to other applications
within graphics and related fields that solve optimization problems
on tesselated domains (e.g., images) and even more general graphs
(e.g., skeletons, maps).

8 Acknowledgements

This work was supported in part by the European Research Council
(ERC starting grant No. 307754 ”SurfComp”), the Israel Science
Foundation (grant No. 1284/12) and the I-CORE program of the
Israel PBC and ISF (Grant No. 4/11). The Hand model is from the
Aim@Shape repository and the Gorilla model is from TurboSquid.
The authors would like to thank Noam Aigerman, Ehud Galun and
the anonymous reviewers for their comments and suggestions.

0 500 1000 1500 2000

fu
nc

tio
na

l v
al

ue

10 5

10 6

10 7

AQP
S&S15

0 1 2 3

iteration count
0 2000 4000

fu
nc

tio
na

l v
al

ue

10 5

10 6

10 7

time (sec)
0 10 20 30 40 50

1

1.5

Figure 12: Parameterization minimizing the isometric distortion energy. Comparing the performance of our approach with that of [Smith
and Schaefer 2015] for the minimization of fISO. In the cow example (6.4k triangles) our algorithm converges in 0.67 seconds compared to
2.68 in Smith and Schaefer’s method. The difference is more significant for the larger horse example (40k triangles), where our algorithm
converges in 5.8 seconds compared to theirs in 45.1 seconds. The resulting parameterizations (ours – left, Smith and Schaefer’s – right) are
essentially identical. (For comparability we have used a single core implementation of [Smith and Schaefer 2015], see the text for details.)

References

AIGERMAN, N., PORANNE, R., AND LIPMAN, Y. 2015. Seamless
surface mappings. ACM Transactions on Graphics (TOG) 34, 4,
72.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, ACM, 43–54.

BECK, A., AND TEBOULLE, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM jour-
nal on imaging sciences 2, 1, 183–202.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Varia-
tional harmonic maps for space deformation. In ACM Transac-
tions on Graphics (TOG), vol. 28, ACM, 34.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. Visualization and Computer Graph-
ics, IEEE Transactions on 14, 1, 213–230.

BOTSCH, M., PAULY, M., GROSS, M. H., AND KOBBELT, L.
2006. Primo: coupled prisms for intuitive surface modeling. In
Symposium on Geometry Processing, no. EPFL-CONF-149310,
11–20.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. In ACM
Transactions on Graphics (TOG), vol. 29, ACM, 38.

COMBETTES, P. L., AND PESQUET, J.-C. 2011. Proximal split-
ting methods in signal processing. In Fixed-point algorithms for
inverse problems in science and engineering. Springer, 185–212.

DEGENER, P., MESETH, J., AND KLEIN, R. 2003. An adaptable
surface parameterization method. IMR 3, 201–213.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic
parameterizations of surface meshes. In Computer Graphics Fo-
rum, vol. 21, Wiley Online Library, 209–218.

FARAGO, I., AND KARATSON, J. 2008. Sobolev gradient type pre-
conditioning for the saint-venant model of elasto-plastic torsion.
Int. J. Numer. Anal. Model 5, 2, 206–221.

FLOATER, M. S., AND HORMANN, K. 2005. Surface parameter-
ization: a tutorial and survey. Advances in multiresolution for
geometric modelling 1, 1.

FU, X.-M., LIU, Y., AND GUO, B. 2015. Computing locally
injective mappings by advanced mips. ACM Transactions on
Graphics (TOG) 34, 4, 71.

GRINSPUN, E., HIRANI, A., DESBRUN, M., AND SCHRÖDER,
P. 2003. Discrete Shells. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 62–67.

HILDEBRANDT, K., SCHULZ, C., TYCOWICZ, C. V., AND
POLTHIER, K. 2011. Interactive surface modeling using modal
analysis. ACM Transactions on Graphics (TOG) 30, 5, 119.

HORMANN, K., AND GREINER, G. 2000. Mips: An efficient
global parametrization method. Tech. rep., DTIC Document.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG,
S.-H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Sub-
space gradient domain mesh deformation. ACM Transactions on
Graphics (TOG) 25, 3, 1126–1134.

HUANG, Q.-X., WICKE, M., ADAMS, B., AND GUIBAS, L. 2009.
Shape decomposition using modal analysis. In Computer Graph-
ics Forum, vol. 28, Wiley Online Library, 407–416.

ISERLES, A. 2009. A first course in the numerical analysis of
differential equations. No. 44. Cambridge University Press.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value co-
ordinates for closed triangular meshes. In ACM Transactions on
Graphics (TOG), vol. 24, ACM, 561–566.

KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN,
Y. 2014. Controlling singular values with semidefinite program-
ming. ACM Transactions on Graphics 33, 4, 68.

KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN, Y.
2015. Large-scale bounded distortion mappings. ACM Transac-
tions on Graphics (TOG) 34, 6, 191.

LEE, J., SUN, Y., AND SAUNDERS, M. 2012. Proximal newton-
type methods for convex optimization. In Advances in Neural
Information Processing Systems, 836–844.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Transactions on Graphics (TOG) 21, 3, 362–371.

LI, H., AND LIN, Z. 2015. Accelerated proximal gradient methods
for nonconvex programming. In Advances in Neural Information
Processing Systems, 379–387.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER,
S. J. 2008. A local/global approach to mesh parameterization.
In Computer Graphics Forum, vol. 27, Wiley Online Library,
1495–1504.

LIU, T., BARGTEIL, A. W., O’BRIEN, J. F., AND KAVAN, L.
2013. Fast simulation of mass-spring systems. ACM Transac-
tions on Graphics (TOG) 32, 6, 214.

NESTEROV, Y. 1983. A method of solving a convex programming
problem with convergence rate o (1/k2). In Soviet Mathematics
Doklady, vol. 27, 372–376.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical optimization.
Springer Science & Business Media.

OCHS, P., CHEN, Y., BROX, T., AND POCK, T. 2014. ipiano:
Inertial proximal algorithm for nonconvex optimization. SIAM
Journal on Imaging Sciences 7, 2, 1388–1419.

PAPADOPOULO, T., AND LOURAKIS, M. I. 2000. Estimating
the jacobian of the singular value decomposition: Theory and
applications. In Computer Vision-ECCV 2000. Springer, 554–
570.

PARIKH, N., AND BOYD, S. P. 2014. Proximal algorithms. Foun-
dations and Trends in optimization 1, 3, 127–239.

PETERSEN, K. B., PEDERSEN, M. S., ET AL. 2008. The matrix
cookbook. Technical University of Denmark 7, 15.

POLYAK, B. T. 1964. Some methods of speeding up the conver-
gence of iteration methods. USSR Computational Mathematics
and Mathematical Physics 4, 5, 1–17.

SAAD, Y., AND VAN DER VORST, H. A. 2000. Iterative solution
of linear systems in the 20th century. Journal of Computational
and Applied Mathematics 123, 1, 1–33.

SACHT, L., VOUGA, E., AND JACOBSON, A. 2015. Nested cages.
ACM Transactions on Graphics (TOG) 34, 6, 170.

SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2013. Locally injective mappings. Computer
Graphics Forum (proceedings of Symposium on Geometry Pro-
cessing) 32, 5.

SHEFFER, A., PRAUN, E., AND ROSE, K. 2006. Mesh param-
eterization methods and their applications. Foundations and
Trends R© in Computer Graphics and Vision 2, 2, 105–171.

SI, H. 2015. Tetgen, a delaunay-based quality tetrahedral
mesh generator. ACM Transactions on Mathematical Software
(TOMS) 41, 2, 11.

SMITH, J., AND SCHAEFER, S. 2015. Bijective parameterization
with free boundaries. ACM Trans. Graph. 34, 4 (July), 70:1–
70:9.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Symposium on Geometry processing, vol. 4.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling in-
elastic deformation: viscolelasticity, plasticity, fracture. In ACM
Siggraph Computer Graphics, vol. 22, ACM, 269–278.

TUCKERMAN, L. S. 2015. Laplacian preconditioning for the
inverse arnoldi method. Communications in Computational
Physics 18, 05, 1336–1351.

TUTTE, W. T. 1963. How to draw a graph. Proc. London Math.
Soc 13, 3, 743–768.

WANG, Y., JACOBSON, A., BARBIC, J., AND KAVAN, L. 2015.
Linear subspace design for real-time shape deformation. ACM
Trans. Graph. 34, 4.

WARDETZKY, M., BERGOU, M., HARMON, D., ZORIN, D., AND
GRINSPUN, E. 2007. Discrete quadratic curvature energies.
Computer Aided Geometric Design 24, 8, 499–518.

Appendix A Energies

For completeness, we provide additional details on the decompo-
sitions and gradients of the energies (4)-(6). First, note that these
energies take the form

f (x) =
∑
j

E (Tj) |tj |,

where

EARAP (T) =
1

2
‖T −R‖2F ,

EISO (T) =
1

2

(
‖T‖2F +

∥∥T−1
∥∥2
F

)
,

ECONF (T) =
1

2
(σ1(T)/σd(T))

2 .

Here, R is the projection of T onto rotations, and σk(T) denotes
the k-th (signed) singular value of the differential T .

Decompositions. Note that, in terms of the singular values of the
differentials, the As-Rigid-As-Possible energy takes the following
form,

fARAP(x) =
1

2

∑
j

‖Tj −Rj‖2F |tj |

=
1

2

∑
j,k

(σk(Tj)− 1)2 |tj | =
1

2

∑
j,k

(
σk(Tj)

2 − 2σk(Tj) + 1
)
|tj |.

Decomposition (4) then follows from the definition of the nuclear
norm and the observation that

1

2
xTHx =

1

2

∑
j

‖Tj‖2F |tj | =
1

2

∑
j,k

σk(Tj)
2|tj |. (14)

Using (14), the decomposition (5) stems from the matrix form of
the isometric distortion,

fISO(x) =
1

2

∑
j

(
‖Tj‖2F +

∥∥T−1
j

∥∥2
F

)
|tj |

The decomposition for the conformal distortion energy, in the case
d = 2, is obtained by simply adding and subtracting (14) from

fCONF(x) =
1

2

∑
j

(
σ1(Tj)

σd(Tj)

)2

|tj |.

Gradients. Consider the gradients of these per-element energies
with respect to a single differential T ∈ Rd×d. From [Chao et al.
2010] we have that

∇EARAP (T) = T −R.

Using [Petersen et al. 2008] we see that

∇EISO (T) = T − T−TT−1T−T .

From [Papadopoulo and Lourakis 2000] we conclude that

∇ECONF (T) =
σ1(T)

σd(T)

σd(T)u1v
T
1 − σ1(T)udv

T
d

σd(T)2
,

where uk and vk are the k-th left and right singular vectors of T ,
respectively.

Then, the chain rule implies that the gradients are given by plugging
∇EARAP,∇EISO or∇ECONF into

∇f (x) =
∑
j

JTj vec (∇E (Tj)) |tj |, (15)

where

Jj =
dvec (Tj)

dx
,

is the d2 × dn Jacobian matrix satisfying vec (Tj(x)) = Jjx.

Appendix B Relation to global-local

To show that QP reduces to the global-local algorithm [Liu et al.
2008] for the As-Rigid-As-Possible energy, we note that by (15),

−∇fARAP(xn−1) = −Hxn−1 +
∑
j

JTj vec (Rj(xn−1)) |tj |,

where Rj(xn−1) is the projection of the differential Tj(xn−1) of
previous iteration onto rotations. Plugging this into Equation (7)
and simple manipulation gives[

H AT

A 0

] [
xn
λ

]
=

[∑
j J

T
j vec (Rj(xn−1)) |tj |

b

]
,

where xn = xn−1 + pn. In turn, this linear system minimizes

1

2

∑
j

‖Tj(xn)−Rj(xn−1)‖2F |tj |

subject to Axn = b. Thus, QP with a constant unit step size coin-
cides with the global-local algorithm: each linear solve constitutes
the “global” step, whereas the “local” step corresponds to the pro-
jection Rj of each differential onto rotations in the gradient com-
putation.

Appendix C Proofs

Proof of Lemma 1. First subtracting xn from the optimal solution
x∗ leads to

en = x∗ − xn = x∗ − yn − tpn

and after multiplying from the left with KT we have

KT en = KT (x∗ − yn)− tK
Tpn (16)

The optimal solution x∗ of f(x) satisfies the following KKT equa-
tion: [

H +G AT

A 0

] [
x∗
λ∗

]
=

[
−a
b

]
and the quadratic proxy step of the algorithm satisfies[

H AT

A 0

] [
pn
λ

]
=

[
−a− (H +G)yn

0

]
.

Subtracting the two equations and rearranging we get

Hpn = (H +G)(x∗ − yn) +AT (λ∗ − λ).

Multiplying this equation by KT from the left and noticing that
KTAT = 0 we get

KTHpn = KT (H +G)(x∗ − yn).

Since pn, x∗ − yn ∈ kerA, and KKTu = u for all u ∈ kerA we
have (

KTHK
)
KTpn =

(
KT (H +G)K

)
KT (x∗ − yn).

Solving for KTpn and plugging in (16) gives:

KT en =MKT (x∗ − yn)

=M
(
(1 + θ)KT en−1 − θKT en−2

)
where the last equality uses yn = (1 + θ)xn−1 − θxn−2.

Proof of Lemma 2. Using the eigen-decomposition M =
UDU−1 we write (12) as the recurrence relation

zn = D ((1 + θ) zn−1 − θzn−2) ,

where zn = U−1xn. This gives n decoupled scalar recurrence
relations, each is of the form

zn − λ(1 + θ)zn−1 + λθzn−2 = 0,

where λ is an eigenvalue of M . The solution this recurrence equa-
tion satisfies |zn| ≤ cn |ξ|n where ξ is the root of the largest mag-
nitude of the basic polynomial ξ2 − λ(1 + θ)ξ + λθ = 0 given by
(using θ > 0 and λ ≥ 0),

ξ(λ, θ) =
λ(1 + θ) +

√
λ2(1 + θ)2 − 4λθ

2
.

We next bound |ξ(λ, θ)| for all λ. Fixing θ, ξθ(λ) = ξ(λ, θ) is real
outside the open interval (0, ν(θ)), where ν(θ) = 4θ

(1+θ)2
. For λ ∈

(0, ν(θ)), |ξθ(λ)| =
√
λθ. Therefore, |ξθ(λ)| is monotonically

increasing for λ ≥ 0. Therefore, we have that |ξ(λ, θ)| ≤ |ξ(ρ, θ)|,
for all θ, where ρ = ρ(M) is the spectral radius of M .

To assure fastest convergence we therefore would like to minimize
the bound |ξρ(θ)|, where ξρ(θ) = ξ(ρ, θ). Its minimum will be
attained at one of the two points: 2

ρ
(1±
√
1− ρ)−1. Simple check

shows that the minimum is achieved at θ− = 2
ρ
(1 −

√
1− ρ) − 1

and |ξ| ≤ ξρ(θ−) = 1−
√
1− ρ.

