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ABSTRACT
We consider the problem of object registration where the observed
template simultaneously undergoes an affine transformation of coor-
dinates and a non-linear mapping of the intensities. More generally,
the problem is that of jointly estimating the geometric and radiomet-
ric deformations relating two observations on the same object. We
show that, in the absence of noise, the original high dimensional non-
convex search problem that needs to be solved in order to register the
observation to the template is replaced by an equivalent problem, ex-
pressed in terms of a sequence of two linear systems of equations. A
solution to this sequence provides an exact solution to the registra-
tion problem.

It is further shown that in the presence of noise, the original
stochastic registration problem can be mapped, almost surely, to a
new deterministic problem in the form of a classic deconvolution
problem. Solution of the deconvolution problem reduces the solution
of the original estimation problem to the form derived for the noise-
free case.

Index Terms— Image registration, Image recognition, Param-
eter estimation, Nonlinear estimation, Multidimensional signal pro-
cessing

1. INTRODUCTION

The problem of estimating radiometric and geometric deformations
of observed objects is an elementary problem in computer vision. Its
explicit, or implicit, solution is an essential part of any registration or
recognition algorithm. Since pose, illumination and acquisition sys-
tem vary, the set of possible observations on an object is immense.
Thus, the task of determining the correspondence between two ob-
servations is extremely complicated.

We elaborate on the case where the global variability associated
with the observation is both geometric and radiometric. Observa-
tions on an object are assumed to simultaneously undergo an affine
transformation of coordinates and a non-linear mapping of the inten-
sities.

In the geometric aspect, the case of affine transformations of co-
ordinates is basic and provides a “first-order” approximation to more
complex cases (such as “small” projective deformations, etc.). The
radiometric aspect may be classified as a part of the general frame-
work known as color constancy [1]. The type of global radiometric
variability we consider is often referred to as “intensity mapping”
or “camera response function”; it naturally appears in the important
case of single-modal registration, where non-linearities are typically
introduced (sometimes intentionally) by an image acquisition system
as the overall non-linearity of its various components (CCD/CMOS,
amplifiers, etc.) [2].

More specifically, let g : R
m → R be a function, representing

a multi–dimensional signal (e.g., m = 2 in the case where the ob-
served signals are images). Consider an observation h on g of the
form h(x) = Q(g(A(x))), where Q is invertible and A is affine.
The right-hand composition of g with A (composition from within)
can be thought of as a spatial/time deformation (i.e., a deformation
of the coordinate system), while its left-hand composition with Q
(composition from without) can be thought of as a memoryless non-
linear input/output system applied to the amplitude of the signal.
Hence, in image formation terminology, the physical model corre-
sponding to such model is that of a simultaneous deformation of
both geometry and radiometry.

From this point of view and in the absence of noise, given two
functions (signals) g and h, the registration problem is then to find, if
exists, a pair (Q,A) such that h(x) = Q(g(A(x))). Unfortunately,
straightforward approaches for solving this problem typically lead to
a high-dimensional non-convex search problem [3, 4, 5]. Hence, the
direct approach is computationally demanding.

Image registration is a field of active research. In particular, var-
ious estimation methods have been proposed in the case of affine
geometric transformations [3, 4, 6]. However, geometric registration
methods that directly employ the intensity information of the image,
typically fail in case there exists some non-negligible radiometric
transformation relating the intensities in the template and the obser-
vation. This limitation leads, in turn, to the need to restrict the regis-
tration procedures to employ only a small fraction of the information
available in the observations (which however is less sensitive to ra-
diometric deformations) by considering edges, or feature landmark
points. The problem of explicitly deriving a registration procedure in
the case of combined radiometric and geometric variations has also
gained some attention, for example see [5]. However, existing meth-
ods evade the inherent non-linearity of the this estimation problem
through linear approximation and/or optimization.

We begin by showing that, in the absence of noise, the underly-
ing algebraic structure of the problem and the notion of “empirical
distribution” may be exploited to map the original highly-complicated
joint estimation problem to an equivalent problem, expressed in terms
of a sequence of two linear problems. Registration is then explicitly
obtained by solving the two systems of linear equations.

In the second part, we assume that the observation is subject to
an additive noise. We briefly present a framework of “uniform dense
sampling” where the notion of “empirical distribution” is expanded
to the noisy case. We show, that by solving a standard deconvolution
problem, the solution of the original stochastic registration problem
is reduced to the form derived in the noiseless case.

5611-4244-1198-X/07/$25.00 ©2007 IEEE SSP 2007



2. PROBLEM DESCRIPTION

Let A : R
m → R

m be an affine transformation of coordinates, i.e.,
A : x �→ Ax + c where A ∈ R

m×m is non–singular and c ∈ R
m.

A shall represent the geometric deformation. Let Q : R → R be an
increasing invertible function, representing the nonlinear radiometric
deformation. Let us further assume that Q (0) = 0.

Let B+
c (Rm) denote the space of bounded, compactly supported,

non-negative, Lebesgue measurable functions from R
m to R. Let

g ∈ B+
c (Rm) and let {η(x) : x ∈ R

m} be a real-valued i.i.d. ran-
dom field with a known distribution function Fη . The problem ad-
dressed in this paper is the following:

Given the known function g and a single measurement (obser-
vation) h of the form

h (x) = [Q ◦ g ◦ A] (x) + η(x) (1)

= Q(g(A(x))) + η(x)

for all x ∈ supp{Q ◦ g ◦ A}, find an estimate for the left-hand
composition Q and the affine transformation A, that is, the matrix
A and the translation vector c.

Remarks. 1. supp{f} denotes the support the function f, (i.e., the
closure of the set where f does not vanish). The restriction x ∈
supp{Q ◦ g ◦ A} can be interpreted as the assumption of known
segmentation.
2. An important special case is the Additive White Gaussian Noise
(AWGN) model, where {η (x) : x ∈ R

m} is also assumed to be zero
mean Gaussian with some known variance σ2

η .

3. THE NOISELESS CASE: AN ALGORITHMIC
SOLUTION

In this section we discuss the noiseless case, that is, where η ≡ 0 in
(1). As we have thoroughly shown in [7], the problem can be solved
in two stages: first, we use an affine-invariant transformation to iso-
late and estimate the left-hand composition Q; next, the solution for
the function Q is used to reduce the original problem to a simpler
one, where the parameters of the affine transformation, A and c, are
evaluated.

Denote by λ the Lebesgue measure on R
m. Let us define the

“empirical distribution” transformation T on B+
c (Rm) by

[Ts] (t) =
1

λ {supp {s}}
λ {x ∈ supp {s} : s (x) ≤ t} (2)

for s ∈ B+
c (Rm). The “empirical distribution” may be thought of

as the “cumulative histogram” of a function. Notice the following
properties of T :

Lemma 1. [7], For a given s ∈ B+
c (Rm) the following hold:

(a) The function S (t) = [Ts] (t) is a distribution function. Fur-
thermore,

i. S (t) = 0 for all t < 0.

ii. S (t) = 1 for all t > supx s (x).

(b) T (s ◦ A) = Ts.
(c) T (W ◦ s) = [Ts] ◦ W−1 for any strictly increasing contin-

uous function W : R → R such that W (0) = 0.

Applying T to relation (1) and using the above properties, we
obtain the following functional relation (recall that η ≡ 0)

Th = T (Q ◦ g ◦ A) = T (Q ◦ g) = [Tg] ◦ Q
−1 (3)

where to simplify the notation we omit the argument of the func-
tions. In other words, Th and Tg are functionally related through
a right-hand composition Q−1. Hence, using the transformation T
we have “converted” a functional relation expressed by a left-hand
composition (i.e., “radiometric deformation”) into a new functional
relation expressed by a right-hand composition (i.e., “geometric de-
formation”).

In fact, equation (3) describes a new, one-dimensional, “time-
domain” registration problem. Hence, any suitable (parametric or
non-parametric) registration method may be used to estimate Q−1.
In particular, in the case where Q is continuously differentiable, we
have the following:

Let {ei} be a countable basis of L2(supp{Th}). By assump-
tion, Q′ is continuous, thus, is in L2(supp{Th}) and can be repre-
sented as

Q
′ (t) =

�

i

biei (t) (4)

Using the estimation algorithm proposed in [8], any finite or-
der model of the type (4) can be solved for the coefficients {bi} by
means of solving a system of linear equations. Since Q (0) = 0, Q
can be easily obtained by integration, which completes the estima-
tion of Q.
Remark. Th and Tg are distribution functions, therefore, they are
not compactly supported. This can be easily rectified by means of
truncation [7], thus, the conditions of [8] are satisfied and the algo-
rithm therein can be employed.

Having estimated Q, we can now estimate the geometric defor-
mation: notice that (1) can be written as

h = [Q ◦ g] ◦ A = ĝ ◦ A (5)

where we define ĝ = Q ◦ g. Since Q has been estimated and g
is known, ĝ represents a “new” template. Hence, (5) describes the
relation of two known functions h and ĝ related by an affine trans-
formation of the coordinates.

That being the case, any suitable method for the registration of
multi–dimensional affine transformations may be used. In particular,
assuming g has no self affine symmetry [6], this equivalent problem
can be easily solved for the unknown affine transformation A (i.e.,
A and c) using the algorithm proposed in [6], again by means of
solving a low-dimensional system of linear equations.

Based on the conclusions in [6, 8], we conclude that if the deriva-
tive of Q admits a finite order representation in (4), and in the ab-
sence of noise, the overall solution for both the geometric and the
radiometric deformations is completely determined and exact.

4. REGISTRATION OF NOISY OBSERVATIONS

In this section we discuss the noisy case, that is, where η in (1) is
a real-valued i.i.d. random field with a known distribution function
Fη . Due to space limitations the results are presented without proofs.
Complete proofs can be found in [9].

Let us first informally discuss the case of noisy observations.
The easiest way to get some intuition as to the notion of “empirical
distribution” in the case of noisy observations is to consider for a
moment the discrete case, where histograms exist. Next, we intu-
itively answer the following question: How does the histogram of
the sum of an image and a noise process look like?

Each bin of the histogram represents the relative frequency of
the respective level (value) in the image. Due to the influence of the
additive noise, any image sample contributing to a single bin of the
image histogram, say the n-th bin, will remain at the same level with
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some probability p(noise = 0). Similarly an image pixel originally
contributing to the n − 1 bin, may with probability p(noise = 1)
contribute to the n-th bin of the noisy image histogram. Repeating
the same argument for the entire support of the noise probability
function, and summing-up all the contributions, we obtain the value
of the n-th bin of the noisy image. Repeating the same argument
for each bin of the image histogram implies that the histogram of the
noisy observation is, qualitatively, the result of convolving the image
histogram with the probability function of the noise.

In the following, we show that the notion of “empirical distribu-
tion” introduced in the previous section may be expanded to the case
of noisy measurements, by formally expressing the above intuitive
arguments.

Let us begin by introducing the following “discrete” transfor-
mations: let {ui}

∞
i=1 be a given sequence of points in R

m; for any
real-valued function s define the transformations {T {ui}

n }∞n=1 by

�
T
{ui}
n s

�
(t) =

1

n
# {i = 1, ..., n : s (ui) ≤ t} (6)

where #B denotes the cardinality of the set B. Whenever the limit
lim

n→∞
[T
{ui}
n s](t) exists for all t ∈ R, we define T {ui} as

T
{ui}s = lim

n→∞
T
{ui}
n s (7)

Remark. Notice that while the transformation T
{ui}
n is well de-

fined for any real function, without a proper selection of a sequence
{ui}

∞
i=1

the transformation T {ui} is not necessarily defined.

To study the action of the above “discrete” transformations on
deterministic functions we introduce some basic definitions and re-
sults from the theory of uniformly distributed sequences [10]. This
theory is, in a sense, a theory of “uniform dense sampling”. It as-
serts that the integral of “well-behaved” functions may be arbitrarily
well approximated by sampling on an appropriate (countable) set of
points. It is also shown that this set of “well-behaved” functions is
exactly the set of Riemann integrable functions.

Closely related to Riemann’s integral is the Jordan measure, de-
fined as follows [11]: A (bounded) subset U ⊆ R

m is Jordan mea-
surable if and only if the Lebesgue measure of its boundary van-
ishes, i.e., λ{∂U} = 0; or equivalently, if its indicator function χU

is Riemann integrable. We can now define a uniformly distributed
sequence:

Definition. Let U ⊆ R
m be a compact, Jordan measurable subset

of R
m (of a positive measure). A sequence {ui}

∞
i=1

⊆ U is said to
be uniformly distributed in U with respect to the Lebesgue measure
λ (abbreviated λ-u.d. in U ) if

lim
n→∞

1

n

n�
i=1

r(ui) =
1

λ{U}

�
U

r(x)dλ(x)

for every Riemann integrable function r with supp{r} ⊆ U .

Remarks. 1. It can be shown that such sequences exist [9, 10].
In fact, they are natural in the sense that an independent sequence
of realizations of a uniformly distributed random variable is almost
surely λ-u.d.
2. The definition above cannot be generalized to Lebesgue mea-
surable functions, as a Lebesgue integral cannot be evaluated on a
countable set of points.

We shall now show the relationship between the transformation
T and its discrete “version” T {ui}. In order to do so, we restrict the

discussion to a better behaved class of functions. Define R+
c (Rm) to

be the set of functions in B+
c (Rm) that also are Riemann integrable.

Restricting the discussion to R+
c (Rm) imposes no significant prac-

tical limitations as it is “rich” enough to describe any sampled phys-
ical signal. In this setting, we have the following result to tie up the
“discrete” distribution transformation with the “continuous” one:

Lemma 2. Let U ⊆ R
m be a compact, Jordan measurable subset

of R
m and let {ui}

∞
i=1

be a λ-u.d. sequence in U . For all r ∈
R+

c (Rm) with supp {r} = U we have

Tr = T
{ui}r

If, in addition, r admits finitely many values, then for all t we have

λ {x ∈ U : r (x) = t}

λ {U}
= lim

n→∞

# {i = 1, . . . , n : r (ui) = t}

n

Hence, for a proper selection of sequence {ui}
∞
i=1

and on the
well-behaved class of functions R+

c (Rm), the transformation T can
be calculated by means of {T {ui}

n }∞n=1.

Until now, we have discussed the application of “empirical dis-
tribution” transformations to deterministic functions. We shall now
discuss the results of applying the transformations T

{ui}
n and T {ui}

to a random field.
Recall that {η (x) : x ∈ R

m} is a real-valued i.i.d. random field
on (Ω,F , P ) with a known probability distribution function Fη . For
a given sequence {ui}

∞
i=1

of distinct points in R
m, the transforma-

tion T
{ui}
n can now be applied to η. In this context, we can rephrase

the Glivenko-Cantelli theorem [12]:

lim
n→∞

�
T
{ui}
n η

�
(t) = Fη(t) a.s. uniformly in t.

Therefore, in terms of the transformations we have previously
defined, T {ui}η = Fη with probability 1. Hence, for any sequence
of distinct points {ui}

∞
i=1

⊆ R
m the transformation T {ui} is a

strongly consistent non-parametric estimator for the probability dis-
tribution function of the random field {η (x) : x ∈ R

m}.

We now return to discuss the problem stated in (1) and derive
our main results. Recall that one is given single measurement (ob-
servation) of the form (1). Further assume that g ∈ R+

c (Rm), i.e.,
g is a bounded, compactly supported, non-negative, Riemann inte-
grable function from R

m to R. Denote g̃ = Q ◦ g ◦ A. Obviously
g̃ ∈ R+

c (Rm) as well. Let U = supp{g} and Ũ = supp{g̃} =
A−1(U).

Let {ui}
∞
i=1

and {ũi}
∞
i=1

be λ-u.d. sequences of distinct points
in U and Ũ respectively.

Proposition 1. If g admits finitely many values, the following holds

�
T
{ũi}h

�
(t) =

R�
r=1

λ
�
x ∈ Ũ : g̃(x) = ṽr

�

λ
�

Ũ
� Fη(t − ṽr)

almost surely, where {ṽ1, . . . , ṽR} is the range of g̃.

If we further assume that the random field {η (x) : x ∈ R
m} has

an absolutely continuous probability distribution function we have
the following result:

Proposition 2. Let fη be the probability density function of the ran-
dom field {η (x) : x ∈ R

m}, then

T
{ũi}h =

��
T
{ui}g

�
◦ Q

−1
�
∗ fη a.s. (8)
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Discussion. The stochastic relation expressed in (1) describes a
noisy observation on a template deformed both geometrically and
radiometrically. Using the transformation T {ui} we have (almost
surely) “converted” this stochastic relation to a new deterministic
functional relation. This relation is expressed by a right-hand com-
position Q−1 (i.e., a deformation of coordinates), followed by the
action of an LTI system. Interestingly, the impulse response of this
LTI system is given by fη , which represents the statistics of the ran-
dom field η.

Hence, in order to estimate the left-hand composition Q, the
original stochastic registration problem can be replaced, with prob-
ability one, by a “new” deterministic problem. This deterministic
problem has the form of a “classic” deconvolution problem. Solu-
tion of the deconvolution problem reduces (8) to the form (3) derived
for the noise-free case. Thus, as in the noiseless case, the original
problem can then be solved in two stages using [6, 8].

Also note that (8) implies robustness of the noiseless algorithm
when applied to a noisy measurement of high signal to noise ratio.
The high SNR case can be characterized by a probability density
function fη that approximates the Dirac delta function. Thus, in
high SNR, (8) naturally reduces to the noiseless equation (3), and Q
may be estimated as before, as illustrated in the next section.

5. CONCLUDING NUMERICAL EXAMPLE

5.1. The Noiseless Case

Let us first illustrate the proposed method in the noiseless case, de-
scribed in Section 3. In this example, the template image g would
be the two-dimensional RGB image of a “flaming fractal” shown in
Figure 1. The template is of dimension 1188 × 891 and the values
of each channel are in the range of [0, 1].

Fig. 1. The template image g.

The observed deformed image h is shown in Figure 2. It is a
version of the template subject to both geometric and radiometric
deformations. The geometric deformation is an affine transformation
of coordinates (without translation). The radiometric deformation
is due to three different point-wise nonlinear mappings applied to
the intensities (amplitudes) of each of the template’s channels. The
mappings QR, QG and QB , respectively corresponding to the RGB

channels of the image, were chosen to be the following polynomials

QR (t) = 2t − t
2; QG (t) = 2t

2 − t
4; QB (t) = t

Fig. 2. The deformed observation image h.

The significant difference between the template and the observa-
tion images, both geometrically and radiometrically (color-wise), is
easily noticeable. Therefore, intensity based geometric registration
methods will typically fail due to the non-linear mapping of inten-
sities. On the other hand, salient feature based methods (landmark
methods), which are in a sense invariant to global mappings of in-
tensities, will have “little to grasp on” in our example due to the
“fractal” nature of the images, as emphasized by the example above.

QR, QG and QB were individually estimated by applying the
proposed algorithm on each of the image channels. The intensity
mapping functions and their corresponding estimates, as obtained
by the proposed algorithm, are shown in Figure 3. The estimation
errors are 2.67 · 10−7; 9.02 · 10−8 and 1.95 · 10−7, respectively,
(evaluated as the L2 norm of the difference between the correct and
estimated functions, normalized by the integration interval).

The affine deformation of coordinates is given by

A =

�
1.3 0.3
0.1 −1.3

�

The estimate is obtained jointly for all channels by stacking the sets
of equations obtained using the individual channel information (see
[6]) into a single over–determined system. This system is solved for
the elements of A using a least squares solution. This estimate yields

Â =

�
1.2970 0.2908
0.0980 −1.3009

�

The error in the estimation of A is 5.77 · 10−5, (where we take the
estimation error to be ‖I − A−1Â‖2

2).

5.2. The Case of Noisy Observations

In this subsection, we examine the performance of the algorithm in
the case of noisy observations of high SNR. As pointed out at the end
of Section 4, the derivation and results in the case of noisy observa-
tions imply the robustness of the (computationally non–demanding)
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Fig. 3. The radiometric deformations QR, QG and QB of the three
image color channels (red, green and blue solid lines) and their esti-
mates (dashed lines).

noiseless algorithm when applied to a noisy measurement of high
signal to noise ratio.

Sequences of Monte Carlo experiments were performed at var-
ious SNRs (20dB ÷ 45dB). The observations h were generated as
before, and a zero mean white Gaussian noise with the appropriate
variance was added.

Remarks. 1. On an image with 256 intensity levels (8 bits) per
channel, the additive white Gaussian noise was chosen to have an
STD equivalent to 0.5÷15 levels. In experiments, a consumer digital
camera (NIKON 8700), in standard room lighting conditions, has
exhibited an inherent noise with an STD equivalent to 0.5÷2 levels.
2. The SNR was calculated as the RMS SNR across the 3 color
channels.

As before QR, QG and QB were individually estimated by ap-
plying the proposed algorithm on each of the image channels. As ex-
pected, in lower SNR the mismatch of the noiseless algorithm is no
longer negligible, and a slight bias in the estimation of QR, QG and
QB is introduced. Nevertheless, estimation errors (MSE) were quite
small (≈ 10−5 in the low SNR experiments). It should be noted that
the estimation variance was practically zero, in correspondence with
the strong consistency of the left hand composition estimation pro-
cedure, expressed in (8); hence, the MSE is mostly comprised of a
deterministic bias, due to the mismatch of the noiseless algorithm.

Next, the estimation procedure for the affine deformation A was
applied. The estimation errors (MSE, in the sense previously de-
fined) are shown in Figure 4. As before, the estimation variance was
practically zero; hence, again the MSE is mostly comprised of a de-
terministic bias, due to the imperfect estimation of the radiometric
deformation.

As a concluding experiment, we repeated the Monte Carlo se-
quence. This time, in a more “realistic” setting: we requantized the
observation image h, to 256 uniformly spaced levels. The estima-
tion results of the affine deformation are also shown in Figure 4. As
expected, results are slightly worse than in the continuous (unquan-
tized) case, yet not significantly.

Interestingly, somewhat better results are exhibited at SNR≈
30dB. This can be informally explained as follows: the entire esti-
mation method strongly depend on the “empirical distribution”. Ob-
viously, this distribution is severely corrupted by quantization. In a
sense, the perturbations introduced by the noise compensate for the
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Fig. 4. The error in the estimation of the affine deformation A.

loss of information caused by the requantization, leading to a better
approximation of Th, the “empirical distribution” of h. Hence, at
certain SNRs, the overall estimation performance is improved. Fur-
ther discussion of the requantization effects is out of scope of this
paper.
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