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Many algorithms on meshes require the minimization of composite objec-

tives, i.e., energies that are compositions of simpler parts. Canonical examples

include mesh parameterization and deformation. We propose a second order

optimization approach that exploits this composite structure to efficiently

converge to a local minimum.

Our main observation is that a convex-concave decomposition of the

energy constituents is simple and readily available in many cases of practical

relevance in graphics. We utilize such convex-concave decompositions to

define a tight convex majorizer of the energy, which we employ as a convex
second order approximation of the objective function. In contrast to existing

approaches that largely use only local convexification, our method is able to

take advantage of a more global view on the energy landscape. Our experi-

ments on triangular meshes demonstrate that our approach outperforms the

state of the art on standard problems in geometry processing, and potentially

provide a unified framework for developing efficient geometric optimization

algorithms.
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1 INTRODUCTION
Mesh processing tasks in computer graphics, including deforma-

tion and parameterization, are often cast as nonlinear minimization

problems of the general form:

min

x
f (x) (1)

Active research effort is dedicated to develop numerical optimization

methods for the solution of such problems, taking advantage of the

known context, e.g., the geometric structure of the problem.

Existing optimization algorithms typically produce a sequence of

approximations, xn , designed to converge to a solution of (1). To

this end, most approaches use, either explicitly or implicitly, a local

quadratic approximation of the objective function: they construct

an osculating convex quadric to f at xn , whose minimization de-

termines the next approximation xn+1. From this point of view, the
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Fig. 1. Deforming a bar using different methods for minimizing the sym-
metric ARAP energy. In this example, we first deform the bar into a bent
position (left); constrained points are highlighted in blue. We then measure
the energy as we release the bar and let it reach its rest pose. The figure
shows a snapshot of the state each method achieved at the time marked on
the graph. Our Composite Majorization (CM-ours) converges faster than
Projected Newton [Teran et al. 2005], SLIM [Rabinovich et al. 2017] and
AQP [Kovalsky et al. 2016].

difference between the various methods lies in the particular choice

of an osculating quadric, or more precisely, the choice of its Hessian.
The archetypal Newton algorithm [Lange 2013; Nocedal and

Wright 2006] uses the Hessian of f itself to define the osculating

quadric. For strictly convex functions, this leads to a well-defined

algorithm with quadratic order of convergence. For non-convex

functions, however, the Hessian is often indefinite and thus New-

ton’s algorithm is no longer guaranteed to be a descent algorithm.

Several general heuristics exist on how to modify Newton’s Hessian

so as to force it into being positive semidefinite. Unfortunately, there

is no clear generic strategy for such modification that works well in

all, or even most cases. Consequently, generic algorithms are usu-

ally satisfied with just finding some decent direction, and Newton’s

desirable convergence rates are often not attained in practice.

In computer graphics, a specific effort is dedicated to developing

efficient optimization algorithms for objective functions defined on

meshes. These algorithms take advantage of the particular structure

of the energies used in geometry processing and introduce, albeit

sometimes implicitly, a convex osculating quadric used to determine

their iterations. For instance, [Kovalsky et al. 2016; Liu et al. 2008;

Sorkine and Alexa 2007] essentially replace the Hessian with the

mesh Laplacian, [Liu et al. 2016] further use low-rank quasi-Newton

updates to better approximate the Hessian, and [Rabinovich et al.

2017] reweigh the Laplacian to improve the effectiveness of their

iterations. These are all first order methods, meaning they do not

directly use second order derivatives of the energy, and therefore

generally fail to achieve high convergence rate, particularly as they

approach convergence.

Our goal is to devise a second order optimization approach appli-

cable to a generic class of composite nonlinear energies in computer

graphics; namely, we are concerned with objective functions that

can be represented as the composition of simpler functions. Our
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strategy for picking a convex osculating quadric at xn is based on:

(i) exploiting the composite structure for constructing a convex ma-
jorizer to f centered at xn , and (ii) computing its Hessian at xn .
The majorizer provides a tight convex upper bound to f in a well

understood, nontrivial neighborhood of xn and therefore provides

a well justified choice of a positive semidefinite Hessian at xn . This
eliminates the need to heuristically enforce positive semidefinitness.

Although a tight convex majorizer for a general non-linear func-

tion f is often difficult to obtain, we make the observation that it

can be derived analytically from convex-concave decompositions of

the functions composing f . Consequently, the resulting Hessian for-

mula at xn takes a simple analytic form and is efficient to compute

in practice.

We argue that common problems in computer graphics are often

compatible with our assumptions on the composite structure of the

objective function. We demonstrate the utility of our approach in ge-

ometry processing of triangular surface meshes via instantiation of

our Hessian formula for several popular energies, such as energies

defined in terms of singular values. In general, applying our method

requires convex-concave decompositions of the functions compos-

ing f . We evaluate the performance of the proposed approach and

show that it outperforms state of the art algorithms on a variety

of geometric optimization problems. Figure 1 shows deformations

of a bar released from a bent initial configuration (left) computed

using several state of the art methods, further details are provided

in Section 5; our method, Composite Majorization (CM-ours), is the

first to converge to the rest state of the bar (right).

2 BACKGROUND
A general meta-algorithm for the unconstrained minimization of

an energy f is summarized in Algorithm 1. It iteratively solves

Hp = −∇f (x), (2)

where H is a positive definite matrix and x is the current iterate,

to determine a search direction p, and takes a step in the direc-

tion p that reduces the value of f . To simplify the exposition, we

describe the unconstrained case; constraints, which are integral

and important to many problems, can be handled via the solution

of the corresponding KKT system in the linear case [Nocedal and

Wright 2006] or by adding penalty to the objective function in the

non-linear case, see Section 5.3 for an example.

Since H is positive definite, the solution of Hp = −∇f (x) corre-
sponds to a minimum of the convex osculating quadric to f at x,
given by

q(z) =
1

2

(z − x)T H (z − x) + ∇f (x)T (z − x) . (3)

Convexity is essential, as it guarantees that the search direction p
is indeed a descent direction, i.e., pT∇f (x) < 0. Line search then

ensures that each iteration of Algorithm 1 reduces the objective.

From this perspective, nonlinear optimization algorithms differ

in the choice of Hessian H of the osculating quadric they employ,

as well as how they enforce its positive definiteness. We present

our approach for choosing H in Section 3. The rest of this section is

devoted to an overview of related methods and puts our approach

in a relevant context.

Algorithm 1: Meta-algorithm for nonlinear optimization

Input: initial guess x
repeat

p← −H−1∇f (x); (compute search direction)

t ← arg minτ ∈(0,1] f (x + τp); (perform line search)

x→ x + t p; (make a step)

until convergence;

Newton’s algorithm. Newton’s algorithm makes the choice H =
∇2 f . This amounts to having the quadric q coincide with f up to sec-
ond order. For convex functions this implies that p is a descent direc-

tion. Furthermore, under additional mild assumptions, Algorithm 1

with this choice of osculating quadric converges quadratically –

probably Netwon algorithm’s most attractive property.

However, when optimizing a non-convex function, which is the

typical case in geometry processing, ∇2 f is not positive semidefi-

nite (PSD) and p is no longer guaranteed to be a descent direction.

Generic techniques simply replace ∇2 f with a positive definite ap-

proximating matrix H . The simplest techniques, such as modifying

the true Hessian by adding a multiple of the identity, are usually

suboptimal and sacrifice convergence rate. Other heuristics, such

as modified factorizations (e.g., spectral, Cholesky) and projection

may perform better, but they also introduce a significant compu-

tational overhead and may become computationally prohibitive.

Unfortunately, there is no universal answer to what constitutes a

good approximation. See Section 3.4 in [Nocedal and Wright 2006]

for a comprehensive discussion on Newton’s method with Hessian

modifications.

Hessian modifications have also been adapted to geometry pro-

cessing in several works [Fu and Liu 2016; Teran et al. 2005]. These

works observe that in the common case of separable energies, which

decompose as a sum over the elements of the mesh, it is sufficient

to modify the sub-Hessians corresponding to each mesh element.

Teran et al. [2005] propose to individually project the Hessian of

each element onto the PSD cone, thus alleviating the computational

burden of projecting the entire, usually large, Hessian at once. The

resulting approximate Hessian is PSD due to linearity, and has been

observed to work better in practice than the generic Hessian modi-

fications [Liu et al. 2016].

Fig. 2 compares different Hessian modification methods for mini-

mizing the symmetric Dirichlet energy (see equation (24)) of a small-

scale sphere mesh comprising ≈ 400 vertices: Newton’s method

(without any modification), our method (CM-ours), the per element

Hessians projections (PN), and full Hessian projections (Full PN).

For the Full PN we tested two variants: (i) replacing eigenvalues of

the Hessian that are smaller than ε to ε (Full-PN(a)); or (ii) adding a

multiple of the identity matrix to the Hessian (Full-PN(b)). As can

be seen from the graph, the latter “off-the-shelf” projections lead

to longer damped phases. Note that the standard Newton’s method

fails to find a descent direction at some point and thus halts.

First order methods. Motivated by the particular structure of the

energies commonly used in geometry processing, several works

have exploited the mesh Laplacian [Pinkall and Polthier 1993] for

approximating the Hessian. The Laplacian is implicitly used in the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 38. Publication date: July 2017.



Geometric Optimization via Composite Majorization • 38:3

Fig. 2. Energy plots for parameterizing a small sphere mesh using different
Hessian modifications.

local/global algorithm [Liu et al. 2008; Sorkine and Alexa 2007] for

minimizing the as-rigid-as-possible energy. Kovalsky et al. [2016]

advocate using the Laplacian instead of the true Hessian for general

energies in geometry processing. Liu et al. [2016] suggest to refine

the Hessian approximation for elastic simulations by applying low-

rank quasi-Newton updates to the Laplacian. These works all benefit

from the observation that the Laplacian is, by definition, positive

semidefinite. Furthermore, by exploiting the fixed Hessian approxi-

mation (i.e., independent of x) they are able to devise particularly

efficient iterations.

Rabinovich et al. [2017] are inspired by the fast initial progress of

global-local iterations and advocate the use of a reweighted Lapla-

cian for the minimization of nonlinear energies on meshes. Their

algorithm is shown to be very efficient in minimizing the energy

from arbitrary feasible initializations, but it significantly slows down

near an optimum, and so additional Newton iterations might be

required if an accurate solution is pursued.

Generally, since first order methods do not fully exploit second

order information, they usually do not achieve the convergence

rates associated with Newton-type algorithms. This is particularly

the case when approaching a minimum, where Newton methods

enter their powerful, quadratically convergent phase [Boyd and

Vandenberghe 2004].

Gauss-Newton. The Gauss-Newton algorithm is often discussed

in the context of nonlinear least squares [Boyd and Vandenberghe

2004; Nocedal and Wright 2006]. It considers energies of the form

f = 1

2

∑
дi

2
, for which the Hessian is given by

∇2 f =
∑
i
∇дTi ∇дi +

∑
i
дi∇

2дi .

The Gauss-Newton method omits the last term of ∇2 f and instead

uses

H =
∑
i
∇дTi ∇дi ,

which is clearly PSD. The rationale is that when the дi values are
small (e.g., close to a minimum), H well approximates the Hessian

∇2 f . Gauss-Newton has been successfully used in computer graph-

ics for problems of adequate form, e.g., [Huang et al. 2009; Tang

et al. 2014].

Functions of the more general form f =
∑
i h(дi ) have also been

studied in [Martens 2010; Schraudolph 2002]. Their generalized

Gauss-Newton Hessian approximation

H =
∑
i
∇дTi (∇

2h)∇дi (4)

is derived similarly to the Gauss-Newton approximation, and re-

duces to it for h(u) = 1

2
u2

. It is guaranteed to be PSD if h is convex.

Majorization-Minimization and Convex-concave. MajorizationMin-

imization (MM) is an optimization framework that works by fitting,

at each iteration, a convex surrogate upper bound, called amajorizer,
which is minimized to drive the objective function downhill. It thus

replaces a difficult optimization with a sequence of simpler optimiza-

tion problems. Simplicity is often attained by variable separation,

linearization, convexification and other approaches that exploit the

structure of specific problems, see [Hunter and Lange 2004] and

[Lange 2013, chapter 8].

The use ofMM is prevalent in various fields of numerical optimiza-

tion, albeit often implicitly: in statistics, the popular Expectation

Maximization (EM) is a special instance of MM [Lange 2013, chapter

9]; so are the classes of iteratively reweighted least squares (IRLS)

and iterative shrinkage thresholding (IST) algorithms, often consid-

ered in the literature of sparse linear inverse problems [Daubechies

et al. 2004, 2010], or Stress Majorization for multidimensional scal-

ing [Gansner et al. 2004], to name just a few examples. Instances of

MM have also been employed in computer graphics, for example in

texture synthesis [Kwatra et al. 2005] or feature matching [Lipman

et al. 2014]. In fact, the popular local-global procedure for the mini-

mization of the as-rigid-as-possible energy [Liu et al. 2008; Sorkine

and Alexa 2007] is another example of a MM algorithm.

Most related to this work is the convex-concave procedure [Lipp

and Boyd 2014; Yuille and Rangarajan 2003]. It is a subfamily of

MM algorithms concerned with objective functions f that decom-

pose as the sum f = f + + f − of a convex and a concave function.

Given such decomposition, a global convex majorizer of f is easily

constructed by replacing the concave f − with its linear approxima-

tion at xn . As with the more general MM, this approach has also

(implicitly) found applications in computer graphics; for example,

Yuille and Rangarajan [2003] show that Sinkhorn’s algorithm, used

by Solomon et al., [2015] for the computation of geometric optimal

transportation, is an instance of the convex-concave procedure.

In the context of Algorithm 1 and equation (2), it is thus natural

to set the approximate Hessian to be the Hessian of the convex

majorizer,

H = ∇2 f +, (5)

which is PSD by construction; this approach is also known as the

MM-Gradient algorithm, see [Lange 2013, chapter 10.4]. Neverthe-

less, while the majority of functions admit a convex-concave de-

composition [Hartman et al. 1959], it is not unique, and the specific

chosen decomposition directly affects H and thus the convergence.

Finding efficient convex-concave decompositions is typically diffi-

cult for complicated functions and, in general, remains a challenge.

3 APPROACH
This paper is concerned with the choice of a convex approximate

Hessian H to be used in the generic nonlinear optimization Algo-

rithm 1. We propose a general methodology for choosing H in a

broad class of non-convex optimization problems, demonstrated to

be particularly suitable for geometry processing tasks.
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Our approach is based on a novel convex majorization technique

for composition of functions for which convex-concave decompo-

sitions are known. In turn, we use the majorizer’s Hessian as H in

Algorithm 1. Our choice of H is therefore: (i) guaranteed to be PSD;

(ii) corresponds to a non-trivial local convex majorizer; (iii) often

takes simple analytic form and thus is simple to evaluate; and (iv)

empirically outperforms alternative choices.

We begin by highlighting our main results and subsequently

present their rigorous definitions and detailed derivations.

3.1 Summary of main results
We consider energies of the form

f (x) =
∑
i
hi (gi (x)) =

∑
i

(
hi ◦ gi

)
(x) , (6)

where hi : Rk → R and gi : Rn → Rk are C2
functions with

convex-concave decompositions. That is, they each decompose as

hi = h
+
i + h

−
i , gi = g+i + g

−
i , (7)

with h+i convex and the vector-valued functions g+i convex in each

of their coordinates and, respectively, h−i and g−i concave.
We will first show how to use these decompositions to construct

a convex majorizer to f centered at a general point x0 that takes the

form

¯f =
∑
i

¯hi ◦
[
gi
]
, (8)

where
¯hi is a majorizer of hi centered at gi (x0), and

[
gi
]
is a vector

function whose entries are either majorizers or minorizers of gi
centered at x0.

We further prove that
¯f is a non-trivial local majorizer, in the

sense that we define the non-trivial set Ω (x0) ⊆ Rn for which
¯f

majorizes f . This comes in contrast to an arbitrarily defined local

majorizer, that may majorize f in only

an arbitrarily small neighborhood of

x0. The inset illustrates our majorizer

(green) for a simple 2-dimensional com-

posed function (yellow) centered at

the black disk; the region Ω(x0), over
which majorization is guaranteed, is

colored red.

Lastly, since
¯f is a convex majorizer, it is natural to employ its

minimization as a proxy for the minimization of f itself. Therefore,

we propose to set H in Algorithm 1 to be the positive semidefinite
Hessian of

¯f at x0, given by

H = ∇2 ¯f =
∑
i

[
∂gi
∂x

]T
∇2h+i

[
∂gi
∂x

]
(9)

+
∑
i, j

(
∂hi
∂uj

)

+

∇2д+i j +
∑
i, j

(
∂hi
∂uj

)

−
∇2д−i j

where (·)+ keeps only positive numbers (linear rectifier), (·)− only

negative numbers, and д+i j and д
−
i j are the j-th coordinates of the

vector-valued functions g+i and g−i , respectively.
Since H only involves the Hessian of the convex-concave parts

of the hi ’s and gi ’s, it is simple to compute. In fact, it often takes an

analytic form, as we demonstrate in Section 4. Moreover, we show

in practice that this choice of H typically outperforms alternative

approaches for choosing a convex approximate Hessian.

3.2 Derivation of majorizer and Hessian
To simplify the notations, let us omit the summation in equation (6)

and consider a function of the form

f (x) = h(g(x)) = h(д1(x), . . . ,дk (x)) (10)

and let h = h+ + h− and дj = д+j + д
−
j be the respective convex-

concave decompositions. Our derivations and results straightfor-

wardly extend to the form (6).

Preliminaries. For a scalar function r with a convex-concave de-

composition r = r+ + r− we define its majorizer at x0 as

r̄ (x;x0) = r+(x) + r−(x0) + ∇r−(x0)(x − x0), (11)

and its minorizer at x0 as

r (x;x0) = r−(x) + r+(x0) + ∇r+(x0)(x − x0). (12)

Note that r̄ (r ) satisfies:

(1) It is a convex (concave) function.

(2) It coincides with r up to first order (i.e., value and first

derivative) at x = x0.

(3) It is a global majorizer (minorizer) of r . That is, for all x

r (x;x0) ≤ r (x) ≤ r̄ (x;x0).

Derivation. Fix x0, set u0 = g(x0) and let

sj (u) = sign

(
∂ ¯h

∂uj
(u;u0)

)
,

where we define here the sign function via

sign(t) =
{

1 t ≥ 0

−1 t < 0

(13)

Intuitively, sj is determined by whether the majorizer of h at u0 is

increasing- or decreasing-monotone in its j-th entry.

Next, define the function [g] : Rn → Rk by each of its entries

[
дj
]
(x;x0) =

{
д̄j (x;x0) sj (u0) > 0

д
j
(x;x0) sj (u0) < 0

(14)

Note that each entry of [g] is either a majorizer or a minorizer of

the corresponding entry in g at u0, in correspondence with the

monotonicity pattern of
¯h.

Equipped with these definitions we now propose our majorizer

for f at x0, and define

¯f (x;x0) = ¯h ([g] (x;x0) ; u0) , (15)

thus concretizing the definition of equation (8).

To show that
¯f is a majorizer, we first have to define the domain

on which it holds. We define

S (x0) =
{
x | sj ([g](x;x0)) = sj (u0)

}
,

the set of all points x for which [g] is compatible with the monoton-

icy pattern of
¯h at u0. Our majorizing domain Ω(x0) is defined by

restricting our attention to the path connected component subset

containing x0:

Ω (x0) = {x | x is path connected to x0 in S (x0)} . (16)
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The inset figure in Section 3.1 depicts an example of a majorizer

of a 2-dimensional function f over the domain Ω(x0) marked red

over the graph of f .

Proposition 3.1. The function ¯f defined in equation (15) is a
convex majorizer of f at x0 over the set Ω (x0) defined in equation
(16).

Proof. First, to see that
¯f is convex over Ω (x0) let us consider

its Hessian. Applying the chain rule yields

∇2

x
¯f (x;x0) =

∂ [g]
∂x

T
∇2h+

∂ [g]
∂x

(17)

+
∑
j

∂ ¯h

∂uj

{
∇2д+j sj (u0) ≥ 0

∇2д−j sj (u0) < 0

.

Note that the first term is always PSD. For x ∈ Ω (x0) the signs in

the second term align and so it is simply a sum of PSD matrices.

Hence, we conclude that
¯f is convex over Ω as a function of x.

Second,
¯f coincides with f up to first order at x = x0, as can be

verified directly from the definitions.

Third, using the properties of majorizers (minorizers) and the

correspondences between the entries of [g] and the monotonicity

pattern of
¯h we see that

¯f (x;x0) = ¯h ([g] (x;x0) ;u0) ≥ ¯h (g (x) ;u0) ≥ h (g (x))

for all x ∈ Ω (x0). Therefore, ¯f is a convex majorizer of f at x0 over

the set Ω (x0). �

This construction provides a non-trivial convex local majorizer

of f . Then, in each step of Algorithm 1 we use this construction

and set

H = ∇2

x
¯f (x;x0)|x=x0

,

which boils down to equation (9).

3.3 Remarks
Structure of Ω(x0). In case all sj (u0) , 0, the point x0 is in the

strict interior of Ω(x0). In the non-generic case of equality in one

or more of these equations, u0 is critical w.r.t. these coordinates

(respectively) and x0 is at the boundary of Ω(x0). Nonetheless, it is

interesting to note that the definition of the sign function we used,

equation (13), is somewhat arbitrary for t = 0; we could alternatively

set sign(0) = −1. In fact, we could use different definitions of the

sign in each coordinate j of (14). Thus, the equations ∂ ¯h/∂uj = 0

implicitly define a partition of the neighborhood of x0, similar to

orthants around the origin, wherein f is majorized over each subset

with a compatible choice of sign functions. This further implies that

the Hessian at x0 is well defined, as these majorizers all coincide up

to the second order at x0, see equation (17).

Hessian-only computation. We note that the convex-concave de-

compositions of hi and gi were necessary for the derivation, but are
in fact not needed for forming a PSD Hessian using our formula in

equation (9). Rather, this computation only requires convex-concave

decompositions of the Hessians,

∇2hi = ∇
2h+i + ∇

2h−i ; ∇2gi = ∇
2g+i + ∇

2g−i ,

where ∇2h+i ,−∇
2h−i ,∇

2g+i and −∇2g−i are all PSD matrices. Note,

however, that the claims of Proposition 3.1 are not guaranteed to

hold in case of a convex-concave decomposition of Hessians that

does not correspond to a global functional convex-concave decom-

position.

Relation to generalized Gauss-Newton. It is interesting to note

that the first term of equation (9) is exactly the generalized Gauss-

Newton matrix [Schraudolph 2002], which involves second order

derivatives of hi but only first order derivatives of gi . From that

aspect, our approach supplements the generalized Gauss-Newton

approximate Hessian by adding positive semidefinite terms account-

ing for the second order derivatives of gi as well.

Hessian approximation and term gathering. Proposition 3.1 im-

plies that the derived PSD Hessian H ≽ 0 satisfies H ≽ ∇2 f (x0)

(inequalities are in the PSD sense). A natural question is whether

equality holds when ∇2 f (x0) ≽ 0. Unfortunately, this is generally

not the case, similarly to other non-full Hessian projection methods.

A tighter approximation to the Hessian can be achieved by term

gathering, as we explain next. Note that the second and third terms

of equation (9) are of the basic form

M = (a)+M1 + (b)+M2,

whereM1 andM2 are both PSD. We observe that ifM1,M2 share a

common term P , such thatM1 − P ,M2 − P and P are all PSD, then

since (a + b)+ ≤ (a)+ + (b)+ we have

M ≽ (a)+(M1 − P) + (b)+(M2 − P) + (a + b)+P ≽ 0. (18)

Thus, term gathering produces a Hessian approximation H ′ that
satisfies H ≽ H ′ ≽ 0 and H ′ ≽ ∇2 f (x0). Empirically, we observed

that term gathering may improve convergence by a small margin.

4 ENERGIES ON TRIANGULAR MESHES
Variational approaches in geometry processing often aim to mini-

mize energies related to some notion of distortion. They often strive

to approximate an isometric map [Aigerman et al. 2015; Chao et al.

2010; Liu et al. 2008; Smith and Schaefer 2015; Sorkine and Alexa

2007], conformal map [Ben-Chen et al. 2008; Desbrun et al. 2002;

Hormann and Greiner 2000; Lévy et al. 2002; Mullen et al. 2008;

Weber et al. 2012], or a harmonic map [Ben-Chen et al. 2009]. Other

approaches minimize energies that represent physical quantities

[Wardetzky et al. 2007; Xu et al. 2015].

Due to their prevalence in geometry processing we concentrate

on triangular meshes. We represent a piecewise linear mapping of a

surface mesh with N vertices into the plane as a vector x ∈ R2N
,

encoding the image of each of the vertices. We further denote by

Ji = Ji (x) =
[
ai (x) bi (x)
ci (x) di (x)

]
(19)

the 2 × 2 Jacobian matrix, with respect to an arbitrary local frame

(i.e., deformation gradient), associated with the i-th mesh triangle,

and note that its entries ai ,bi , ci ,di are linear in x.

Singular value energy templates. Energies defined in terms of the

singular values of Ji are prevalent in geometry processing. They
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Source

symmetric ARAPsymmetric Dirichlet

Fig. 3. Shape deformation with positional constraints, using different en-
ergies. The symmetric Dirichlet and symmetric ARAP energies are both
minimized using our method, demonstrating how it can be used for mini-
mizing different distortion energies.

can often be formulated as

f (x) =
∑
i
h (Σi ,σi ) |ti | , (20)

where summation is over all triangles, Σi and σi are the singular
values of the Jacobian Ji of the i-th triangle, and |ti | is its area.

Energies of the type (20) are already in the form our approach

addresses, namely,

∑
i hi ◦ gi with

gi = (Σi ,σi ) . (21)

To obtain a convex-concave decomposition for gi recall that [Lipman

2012; Smith and Schaefer 2015] use the fact that

Σi = ‖αi ‖ + ‖βi ‖
σi = ‖αi ‖ − ‖βi ‖ ,

where,

αi =
1

2

[
ai + di
ci − bi

]
, βi =

1

2

[
ai − di
ci + bi

]
(22)

represent the closest similarity (complex derivative) and closest

anti-similarity (complex anti-derivative), respectively [Chien et al.

2016].

Therefore, it is only natural to decompose gi = g+i + g
−
i with

g+i = (‖αi ‖ + ‖βi ‖ , ‖αi ‖)
g−i = (0,− ‖βi ‖) .

(23)

Clearly, g+i is convex and g−i is concave. Note that g+i and g−i have

‖αi ‖ and ‖βi ‖ in common; and thus, in our implementation, we

use the common term gathering in equation (18).

Next, we apply this template for two energies that measure iso-

metric distortion.

Symmetric Dirichlet energy. The isometric distortion energy con-

sidered in [Schreiner et al. 2004; Smith and Schaefer 2015] is

fISO (x) =
∑
i

(
Σ2

i + Σ−2

i + σ
2

i + σ
−2

i

)
|ti | . (24)

It immediately takes the form

∑
i hi ◦ gi with gi = (Σi ,σi ) as in

equation (21) and

hi (u,v) =
(
u2 + u−2 +v2 +v−2

)
|ti | .

Note that hi is convex with respect to u,v > 0 and thus, with the

decomposition (23) of gi the formula for H in equation (9) can be

readily computed to obtain a PSD Hessian. Figure 3 depicts mesh

deformations obtained by minimizing this energy.

Symmetric as-rigid-as-possible (ARAP) energy. This isometric dis-

tortion energy is a symmetric version of the ARAP energy that

equally penalizes stretching and shrinking and hence also resists

element flips. We formulate it as

fSARAP (x) =
∑
i

(
(Σi − 1)2 +

(
σ−1

i − 1

)
2

)
|ti | . (25)

It takes the form

∑
i hi ◦ gi with gi = (Σi ,σi ) and

hi (u,v) =
(
(u − 1)2 +

(
v−1 − 1

)
2

)
|ti | .

Note that while the term dependent on u in hi is convex, the term
dependent on v is not. Since (v−1 − 1)2 is convex on (0, 1.5] and
concave on (1.5,∞), it is easy to analytically decompose it, using

its linearization at v = 1.5, as (omitting the area term for brevity)

h+(u,v) =
{
(u − 1)2 +

(
v−1 − 1

)
2

0 < v ≤ 1.5

(u − 1)2 − 3

9
+ 8

27
v v > 1.5

h−(u,v) =
{

0 0 < v ≤ 1.5(
v−1 − 1

)
2

+ 3

9
− 8

27
v v > 1.5

In turn, the formula for H in equation (9) can be readily used for

minimizing the symmetric ARAP energy, see Figure 3 for an exam-

ple.

Strain energy density for Neo-Hookean material. In two dimen-

sions, the strain energy density for Neo-Hookean material can be

formulated as

fNH(x) =
∑
i

[
µ

2

(
‖ Ji ‖2

F
det Ji

− 2

)
+
κ

2

(det Ji − 1)2
]
|ti | , (26)

where µ and κ are modeling coefficients, related to the response of

the material to shear stress and compression resistance, respectively

[Xu et al. 2015]. Geometrically, the first term of the objective is

related to conformal distortion (MIPS) [Hormann and Greiner 2000],

whereas the second term accounts for area change.

This energy takes the form

∑
i hi ◦ gi with

hi (u,v) =
(
µ

2

u2

v
+
κ

2

(v − 1)2
)
|ti |

gi (x) = (‖ Ji ‖F , det Ji ).
Note that hi is convex and so is дi1. For its second entry we note

that, with the notations of equation (19), we have

det Ji = aidi − bici

=
1

4

[
(ai + di )2 + (bi − ci )2

]
− 1

4

[
(ai − di )2 + (bi + ci )2

]
.
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Fig. 4. Minimization of the Neo-Hookean strain density using our approach.
Positional constraints are depicted in light blue. Snapshots of the state of
the mesh are presented for our method (blue) and projected Newton (PN)
(magenta) after (a) 1 iteration, (b) 40 iterations, and (c) upon the convergence
of PN. Note that our approach is substantially more effective in minimizing
this energy from the initial state (left, in black).

Thus we take

g+i (x) =
(
‖ Ji ‖F ,

1

4

[
(ai + di )2 + (bi − ci )2

] )

g−i (x) =
(
0, −1

4

[
(ai − di )2 + (bi + ci )2

] )
.

The advantage of using our approach for this energy is demonstrated

in Figure 4; see Section 5.2 for additional details.

5 EXPERIMENTAL EVALUATION
We tested our approach on a number of standard problems in ge-

ometry processing formulated using the energies introduced in the

previous section. We compared our approached (CM-ours) to the

following state of the art approaches:

Newton’s Algorithm – We followed the approach described in

[Liu et al. 2016; Teran et al. 2005] and implemented a pro-

jected Newton (PN) solver, wherein the Hessian of each

triangle is computed using automatic differentiation, and

then individually projected via eigen-decomposition onto

the PSD cone. We used our analytic Hessian formula in

equation (9) to efficiently compute the indefinite Hessian

(by simply dropping the clamping).

We observed that computation of Hessians using our

analytic formulation works an order of magnitude faster

than the automatic differentiation typically used for this

task [Liu et al. 2016; Rabinovich et al. 2017].

Scalable Locally Injective Mappings – We implemented the ap-

proach of [Rabinovich et al. 2017], wherein amodified Lapla-

cian takes the place of the Hessian (SLIM). We followed

the authors’ update formula for the reweighting.

Accelerated Quadratic Proxy – We implemented the approach

of [Kovalsky et al. 2016], wherein the Laplacian itself re-

places the Hessian.We compared to their accelerated (AQP)
as well as non-accelerated (QP) variants.

Implementation details. For comparability, we integrated the above

approaches into a single C++ implementation of Algorithm 1, de-

ployed on an Intel i7-3970X, CPU 3.50GHz machine. Our imple-

mentation relies on LIBIGL [Jacobson et al. 2016]; we employ the

PARDISO solver [Kuzmin et al. 2013; Schenk et al. 2008, 2007] for

the linear solve in the CM-ours, PN and SLIM algorithms, and use

LU prefactorization for the QP and AQP algorithms.

We used a standard Armijo backtracking algorithm for determin-

ing the step size [Nocedal and Wright 2006]. The energies we used

infinitely penalize for triangle inversion, see Section 4. As such,

we used the determinant criterion of [Smith and Schaefer 2015] to

determine a maximal non-inverting step size. This ensures that, in

each of the iterations of Algorithm 1, the initial triangle orientations

are all preserved.

5.1 Surface parameterization
We tested our approach on surface parameterization computed by

minimizing the symmetric Dirichlet energy, equation (24). We fol-

lowed the standard protocol of using Tutte’s embedding for com-

puting a bijective initial parameterization [Kovalsky et al. 2016;

Rabinovich et al. 2017; Smith and Schaefer 2015]. In turn, we note

that the resulting parameterizations are guaranteed to be locally

injective, as we minimize an inversion-resisting energy and accord-

ingly restrict our line-search.

We conducted an extensive evaluation of our approach on a

dataset of 30 surfaces taken from [Myles et al. 2014; Rabinovich

et al. 2017]. Figure 5 shows the results obtained in four examples,

comparing the performance of our approach with that of alternative

approaches. Our approach (blue) outperforms the others by a signifi-

cant margin. Table 1 further summarizes our evaluation. Noticeably,

the second order approaches (CM-ours, PN) require substantially

fewer iterations to converge. Consequently, their overall conver-

gence time is also lower, even though the first order alternatives

(SLIM, AQP) spend less time per iteration.

Figure 6 exemplifies the scalability of our approach in comparison

to that of SLIM. In this experiment, we computed the parameteri-

zation of meshes of different sizes obtained by coarsening a high

resolution surface mesh. Our method converges after an almost

constant number of iterations, a behavior that is typical to second

order optimization approaches, and scales substantially better than

SLIM to high resolution meshes.

5.2 Mesh deformation
We evaluated our approach for computing mesh deformations. Simi-

larly to surface parameterization, our method demonstrates superior

performance. Figure 1 shows a comparative experiment where we

minimize the symmetric ARAP of equation (25): we first bend a bar,

then release it and measure the time it takes to reach the rest pose. In

this example our method is more than 4 times faster than projected

Newton and substantially faster than the others. Figure 3 demon-

strates the deformations obtained by minimizing the symmetric

Dirichlet and symmetric ARAP energies using our method.

We further argue that, for deformation, short per iteration time is

as important as convergence rate. Since deformation is an interactive

process, it must be reactive to the input of the user. In our experiment

we observed that our iterations are also faster than the projected
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Fig. 5. Surface parameterization: comparing our approach with the state of the art for the minimization of the symmetric Dirichlet Energy. The graphs
show how the different optimization approaches reduce the energy as a function of the number of iterations or run time. Noticeably, our approach (blue)
outperforms the alternative approaches. The top row shows the planar parameterization obtained using our optimization (shading indicating isometric
distortion) and a texture respectively mapped back to the surface.
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Fig. 6. Scalability. We applied our approach and SLIM for parameteriz-
ing meshes of increasing resolutions representing the same surface. The
graphs show the number of iterations and run time required for problems
of different sizes to converge.

Newton iterations and thus better suited for deformation; this is

exemplified in the attached supplemental video.

Figure 4 demonstrates how our approach is used for minimizing

the Neo-Hookean strain density in equation (26). In this experiment

we set the energy parameters to µ/κ = 2 · 10
−3
, which models

natural rubber. We initialize with a feasible solution that satisfies

the positional constraints illustrated in the figure. The projected

Newton algorithm requires more than twice as many iterations to

converge. In addition, our approach is more effective in reducing

the energy in the first few iterations; the figure shows the result

after just 1 iteration, 40 iterations and upon the convergence of the

projected Newton approach.

5.3 Seamless parameterization
Introducing compatibility constraints on the seams of a cut surface

finds applications in quadrangulation [Bommes et al. 2009] and

surface mapping [Aigerman et al. 2015] among others. We have

experimented with supplementing our surface parameterization

algorithm (Section 5.1) with two types of seam compatibility con-

straints:

Similarity – where we constrain corresponding edges that belong

to the same seam, to be related by a similarity transforma-

tion. Namely, if u1,u2 ∈ R2
are the end-points of a seam

edge corresponding to v1, v2 ∈ R2
, we require that

v2 − v1 = T (u2 − u1) =
[
a b
−b a

]
(u2 − u1) , (27)

where T is a similarity matrix parameterized by a,b ∈ R.
Seamless – where the matrix T above is constrained to be a rota-

tion by a multiple of 90 degrees. We realize this constraint

by enforcing equation (27) with the additional quadratic
constraints

a2 + b2 = 1; ab = 0. (28)

Note that this compatibility constraint is a fundamental

prerequisite for producing a quadrangulation, however, it

is insufficient on its own [Bommes et al. 2013].

Figure 7 illustrates the difference between parameterizations that

satisfy either of these compatibility constraints.
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CM-ours Projected Newton SLIM AQP
Name # vert # elem iter time [sec] energy iter time [sec] energy iter time [sec] energy iter time [sec] energy

cow 4540 8626 33 0.60 2.08413 41 0.98 2.08413 394 5.63 2.08417 316 1.63 2.08420

bumpy_sphere 5851 11444 20 0.51 2.04661 19 0.68 2.04661 122 2.26 2.04662 61 0.41 2.04662

dente 9512 18670 56 2.01 2.02605 37 1.94 2.02605 384 12.94 2.02613 - - -

octo2 15141 26968 36 2.00 2.09024 53 3.88 2.09024 812 37.52 2.09027 800 13.37 2.09036

hilbert 18424 32228 80 4.24 2.00001 112 8.70 2.00000 1466 67.58 2.00050 613 10.47 2.00023

armadillo1 22145 43160 29 3.07 2.07490 44 5.73 2.07490 339 28.21 2.07494 - - 2.07491

david 25604 50864 22 2.68 2.19244 27 4.14 2.19244 107 10.87 2.19245 312 8.57 2.19246

blade 29583 58546 27 4.10 2.08289 28 5.42 2.08289 327 40.82 2.08291 355 12.98 2.08293

hand 37234 72958 23 4.21 2.01556 27 6.19 2.01556 391 55.44 2.01557 399 17.83 2.01557

gargoyle 49622 98803 34 8.47 4.21048 47 14.61 4.21048 190 40.50 4.21049 - - 4.21048

vase_lion 49862 99237 27 6.15 3.51237 39 11.07 3.51237 104 20.18 3.51237 - - 3.51237

armchair 50399 100000 21 5.07 2.07815 25 7.65 2.07815 360 67.30 2.07816 407 24.00 2.07824

bimba 50296 100000 24 6.29 2.34664 30 9.67 2.34664 223 46.70 2.34665 319 20.42 2.34665

buste 50390 100000 38 8.13 2.13799 35 10.19 2.13799 533 97.33 2.13800 1041 62.92 2.13799

camille_hand 50608 100000 37 7.93 2.05489 48 13.46 2.05489 872 161.59 2.05506 3886 255.80 2.05546

chinese_lion 50365 100000 40 9.56 2.23405 44 13.45 2.23405 459 96.40 2.23407 1199 85.15 2.23424

armadillo2 50401 100000 63 13.15 2.48220 75 21.04 2.48220 1022 199.90 2.48226 - - 2.48221

bunny1 54066 107936 108 28.80 4.22693 110 37.81 4.22693 660 172.05 4.22698 2219 163.30 4.22709

bunny2 56250 111364 32 9.53 2.05018 57 20.23 2.05018 678 173.04 2.05021 1906 174.01 2.05031

superman2 95648 190471 29 14.54 3.16845 43 25.69 3.16845 71 31.21 3.16845 478 62.89 3.16846

superman3 95712 190471 27 13.66 2.61709 56 31.84 2.61709 68 29.42 2.61709 220 28.98 2.61709

superman1 101665 203002 32 16.81 3.98495 59 37.18 3.98495 105 48.14 3.98496 - - 3.98495

male 148031 293224 87 57.03 2.04748 101 84.27 2.04748 1039 656.08 2.04757 4116 970.33 2.04879

bear 148484 296409 25 20.07 2.74587 49 45.78 2.74587 68 47.49 2.74587 267 65.06 2.74587

octo1 151415 299324 40 25.71 2.08371 48 39.66 2.08371 979 536.40 2.08379 1554 332.23 2.08394

dragon_head 194093 386992 21 23.39 2.38146 25 32.25 2.38146 71 63.58 2.38147 508 161.62 2.38147

eros 197405 394456 26 31.43 4.65212 27 39.76 4.65212 148 157.73 4.65214 1155 348.42 4.65214

buddha 235771 470507 26 34.39 2.36141 35 54.18 2.36141 52 61.38 2.36141 186 77.84 2.36141

lucy 501130 1000000 117 293.93 2.23208 153 455.03 2.23208 2579 6365.07 2.23235 - - 2.24268

chinese_dragon 657331 1311956 40 129.96 2.25100 42 164.68 2.25100 1148 3176.33 2.25107 - - 4.61829

Table 1. Surface parameterization: comparing our approach with state-of-the-art approaches for the minimization of the symmetric Dirichlet Energy.
Experiments that did not converge within 6000 iterations are omitted from the table. Our algorithm compares favorably in both iteration count and convergence
time in all cases excluding two instances where it is found to be comparable. Note that SLIM and AQP typically fail to reduce the energy to the values achieved
by our approach.

We have computed parameterizations with seam compatibility

constraints on surfaces from the dataset of [Myles et al. 2014]. We

cut each of the surfaces along geodesics corresponding to a minimal

spanning tree defined by the singularity points provided with the

dataset. We then used our Algorithm 1 with our choice of Hessian

to minimize the symmetric Dirichlet energy.

In our first experiment we computed maps subject to similarity

seam compatibility constraints. To that end, we added a term to

the objective function that penalizes, in the least squares sense, for

the bilinear constraints of equation (27); respectively, we added the

Gauss-Newton matrix [Nocedal and Wright 2006] corresponding

to this penalty term to the Hessian we used. We empirically ob-

served that adding this term with a small fixed weight (0.1 in our

experiments) suffices to satisfy the similarity seam compatibility

constraints (up to numerical precision); results are shown in Figure 7

(left) and Figure 8 (top).

Our second experiment aimed to enforce a seamless compatibility

constraint, i.e., restrict the transformation relating corresponding

edges of a seam to a rotation by amultiple of 90 degrees.We achieved

that by introducing an additional objective term penalizing for the

quadratic constraints of equation (28). We started from the parame-

terization satisfying the similarity seam compatibility constraints

as described above. Then, we solved a sequence of optimization

problems, wherein we gradually increased the weights of the terms

penalizing for the seam compatibility constraints in equations (27)-

(28). Our experiments used the same naive penalty schedule for all

examples (weights increased from 10
−5

by a factor of 10 until all

constraints are met); also, we did not utilize any additional infor-

mation (e.g., prescribed rotations extracted from a vector field, as

in [Rabinovich et al. 2017]). Figure 7 (right) and Figure 8 (bottom)

show results obtained using our approach.

Fig. 7. Parameterization with seam compatibility constraints. We enforce
either a similarity transformation between corresponding seam edges (left)
or a rotation by a multiple of 90 degrees (right). The illustrations on the flat
parameterization depict corresponding edges of a seam related by either
a similarity or a rotation by 90 degrees. Note that the latter suffices to
ensure that angles are correctly aligned, but still misses integer translations
required for quadrangulation [Bommes et al. 2013].

6 CONCLUDING REMARKS
In this paper we presented an optimization approach for energies

that are compositions of simpler parts, each admitting a convex-

concave decomposition. Our approach exploits this structure to de-

vise a novel convex majorizer, and consequently an efficient second

order optimization algorithm. Thus, each iteration of our algorithm

is in a sense aware of the global energy landscape, rather than rely-

ing on strictly local second order approximation. We demonstrated

the utility of our approach in surface parameterization and mesh

deformation, where its performance exceeds the state of the art.
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Fig. 8. Parameterization with seam compatibility constraints. We enforce either a similarity transformation between corresponding seam edges (top) or a
rotation by a multiple of 90 degrees (bottom). Note that the latter suffices to ensure that angles are correctly aligned, but is insufficient on its own to produce
an integer grid map inducing quadrangulation [Bommes et al. 2013].

One limitation of our approach is that the majorizer we define

depends on the particular decomposition used, i.e., different decom-

positions of the objective function generally correspond to different

majorizers, and thus to different choices of H . In this aspect, we

note that the notions of optimality or “quality” of H are ill-defined;

we are unaware of a method for comparing different choices of H
that predicts their effectiveness for optimization. For instance, we

observed that the difference between our choice of H and that of

projected Newton’s is an indefinite matrix.

We also note that our choice of Hessian in equation (9) is, in

general, not guaranteed to coincide with the true Hessian of the

objective function on its convex regions. In some cases, this can

be directly revealed by the functions composing our majorizer. De-

tecting this discrepancy can perhaps be used, in future work, to

improve convergence, e.g., by reverting to the true Hessian when-

ever possible.

Lastly, the approach presented in this work can be extended and

applied to problems in higher dimension. In these cases, we believe

that our analytic formula would provide an even better relative per-

formance improvement over approaches such as projected Newton,

that need to project (e.g., via eigen-decomposition) larger matrices.
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