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Figure 1: Initializing high-dimensional ICP for non-rigid registration of two human surfaces using different methods: (a) input shape; (b)
random initialization; (c) initialization using Wave Kernel Signatures (four examples are shown to its left); (d) initialization with segment
correspondence (four examples are shown to its left). The initialization is crucial for good matching; in (e) we show the result of initialization
using PM-SDP which provides comparable result to (d).

Abstract

Point cloud registration is a fundamental task in computer graph-
ics, and more specifically, in rigid and non-rigid shape matching.
The rigid shape matching problem can be formulated as the prob-
lem of simultaneously aligning and labelling two point clouds in 3D
so that they are as similar as possible. We name this problem the
Procrustes matching (PM) problem. The non-rigid shape matching
problem can be formulated as a higher dimensional PM problem
using the functional maps method. High dimensional PM prob-
lems are difficult non-convex problems which currently can only
be solved locally using iterative closest point (ICP) algorithms or
similar methods. Good initialization is crucial for obtaining a good
solution.

We introduce a novel and efficient convex SDP (semidefinite pro-
gramming) relaxation for the PM problem. The algorithm is guar-
anteed to return a correct global solution of the problem when
matching two isometric shapes which are either asymmetric or bi-
laterally symmetric.

We show our algorithm gives state of the art results on popular
shape matching datasets. We also show that our algorithm gives
state of the art results for anatomical classification of shapes. Fi-
nally we demonstrate the power of our method in aligning shape
collections.
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1 Introduction

Registration of point sets is a central problem in computer graphics
with many applications including shape analysis, shape retrieval,
statistical shape inference, and shape reconstruction.

Among the different formulations of the point set registration
problem, the Procrustes matching (PM) formulation is very com-
mon: Given two d-dimensional point sets of n points each,
P,Q ∈ Rd×n, which are neither aligned nor consistently la-
beled, the task is to find a linear isometry (i.e., an orthogo-
nal transformation) R ∈ O(d) and a permutation X ∈ Πn

minimizing the distance between the point sets:

d(P,Q) = min
X,R
‖RP −QX‖2F (1a)

s.t. X ∈ Πn (1b)
R ∈ O(d) (1c)

Procrustes matching arises naturally in two and three dimensions
(d = 2, 3) for rigid matching problems. Non-rigid matching prob-
lems are also often formulated in this way, wherein linear isometries
in higher dimension (d � 3) approximate non-rigid isometries of
the shapes; this idea is advocated in Functional Maps [Ovsjanikov
et al., 2012] where the Laplace-Beltrami eigenfunctions are used
for the high-dimensional embedding.

The optimization problem (1) is non-convex and globally optimiz-
ing it is difficult. In fact, even the subproblem of finding an exact so-
lution for PM when such a solution exists (i.e., when d(P,Q) = 0)
is difficult. It can be shown that this subproblem can be solved
in polynomial time iff there is a polynomial time algorithm for the
exact graph matching problem. The latter is a well researched prob-
lem for which no polynomial time algorithm is known.
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The iterative closest point (ICP) [Besl and McKay, 1992] algorithm
is a popular algorithm for locally minimizing (1), based on the fact
that when either R or X are held constant, (1) can be solved glob-
ally. As we will demonstrate, (1) has a vast amount of local minima,
so that the success of ICP depends heavily on a good initialization.

Previous methods relied on shape features/signatures and/or prior
knowledge to initialize ICP. For example, Figure 1 depicts different
initializations for solving (1) in the context of Functional Maps for
surface matching; a source model (a) is matched to a target model
using different initialization for R: (b) shows results achieved from
random initialization; (c) demonstrates an initialization of R using
Wave Kernel Signatures [Aubry et al., 2011]; and (d) demonstrates
initialization using matched segments. Both (c) and (d) are com-
mon initializations used in Functional Maps papers [Ovsjanikov
et al., 2012; Pokrass et al., 2013]. In this case, all initializations
aside from the segmentation correspondence resulted in suboptimal
matching (in (c), for instance, the left hand of the model in (a) is
incorrectly matched to the chest).

The goal of this work is to approximate the global minimum of
(1). To accomplish this, we present a novel convex relaxation of
PM using semidefinite programming (SDP), which we name PM-
SDP . Standard SDP relaxations are known to give very accurate
approximations, at the price of high time complexity. For exam-
ple, [Kezurer et al., 2015] give an extremely accurate relaxation for
the quadratic matching problem, but their algorithm can only run
on a handful of points. We formulate a similar SDP relaxation for
PM, and use results on semidefinite completion problems to signif-
icantly reduce the size of the semidefinite constraints while remain-
ing equivalent to the original relaxation. As a result, our relaxation
has significantly improved time complexity.

Our relaxation is applicable to point sets consisting of around 100
points of a reasonably high dimension (15-20). Applying our algo-
rithm to initialize the Functional Maps ICP as shown in Figure 1(e)
provides results which compare favorably with matchings achieved
with random and WKS initializations, and are comparable to results
achieved with matched segmentation initialization.

We demonstrate the accuracy of the suggested relaxation both the-
oretically and experimentally. We prove that for problems without
noise, the relaxation returns a correct global minimum of PM. Up
to technical details, this analysis is valid for asymmetric shapes,
as well as shapes with bilateral symmetries. The latter include
many important instances of the shape matching problem, such
as matching human bodies. We also show our algorithm achieves
the global optimum for perturbed asymmetric shapes. Experimen-
tally we show that at low noise levels our algorithm still returns
the global minimum, and at high noise levels it returns a close-to-
optimal local minimum.

We demonstrate the strength and applicability of the PM-SDP re-
laxation by achieving state of the art results on standard non-rigid
shape matching benchmarks such as SCAPE [Anguelov et al.,
2005] and the more recent FAUST [Bogo et al., 2014]. We
also demonstrate applications to collective matching and biologi-
cal shape classification.

2 Previous work
Point cloud registration is a basic building block in computer
graphics and geometry processing. We mention works that are most
relevant to this paper. For detailed survey see [Tam et al., 2013].

For input shapes or point clouds which are close to being aligned,
the ICP algorithm and its many variants [Rusinkiewicz and Levoy,
2001] are a popular choice. For shapes that are not roughly aligned
the ICP algorithm can be easily stuck in local minimum. A widely

used method for matching shapes in a general position is RANSAC
[Fischler and Bolles, 1981], which exhaustively samples the space
of possible transformations. Being essentially a brute-force algo-
rithm, its drawback is the high complexity which results in poor
scalability to higher dimensions.

Another way to deal with shapes that are not roughly aligned is to
try to find a good initialization for ICP. Representative works in this
direction are the works of [Gelfand et al., 2005; Yang et al., 2013]
which use combinatorial optimization techniques in order to find
the optimal solution in 3D.

Non-rigid shape matching is a central task in geometry pro-
cessing. We discuss relevant work and refer to relevant surveys
for more details [Wand et al., 2011; Van Kaick et al., 2011; Tam
et al., 2013]. One approach is to formulate the non-rigid problem
as a version of the quadratic assignment problem called quadratic
matching. [Mémoli and Sapiro, 2004; Bronstein et al., 2006] sug-
gest to minimize the Gromov-Hausdorff distance where [Bronstein
et al., 2006] also introduce the generalized multidimensional scal-
ing variant on point metric spaces; [Leordeanu and Hebert, 2005;
Berg et al., 2005] relax the quadratic matching problem using lin-
ear programming and spectral techniques; [Kezurer et al., 2015]
suggest a convex SDP relaxation to the quadratic matching prob-
lem; and [Chen and Koltun, 2015] suggest a linear programming
relaxation solved using MRF (Markov Random Fields) techniques.

Another approach is to restrict the mapping search space to a
smaller, more tractable space such as: low dimensional deformation
space [Brown and Rusinkiewicz, 2007], conformal mappings [Lip-
man and Funkhouser, 2009; Zeng et al., 2010; Kim et al., 2011];
or isometries [Ovsjanikov et al., 2010; Tevs et al., 2009]. Some
works try to adapt the 3D ICP algorithm to the non-rigid case [Li
et al., 2008], whereby typically a deformation model is chosen (e.g.,
piecewise affine) and the algorithm iterates between finding corre-
spondences and solving for the optimal deformation.

Non-rigid shape matching can also be tackled using supervised ma-
chine learning techniques, where typically the algorithm is focused
on a specific type of data. For instance, [Zuffi and Black, 2015; Wei
et al., 2015] train a model that matches human bodies.

The most relevant methods to this paper pose the non-rigid shape
matching problem as a high dimensional rigid shape matching prob-
lem [Jain et al., 2007; Ovsjanikov et al., 2008; Ovsjanikov et al.,
2012; Pokrass et al., 2013]. These methods map each point of the
input point cloud to a vector containing the values of the eigen-
functions of the Laplace-Beltrami operator [Rustamov, 2007]. The
central observation is that if the input shapes are isometric, the in-
trinsic isometry between them becomes an extrinsic isometry in the
high dimensional space [Ovsjanikov et al., 2008]. This opens the
door for using rigid matching algorithms such as ICP in the context
of the more complicated non-rigid matching problem. The problem
is that finding a good initialization is difficult for high dimensional
problems. Current methods partly employ prior knowledge, such as
correspondence between pre-computed segments, to initialize the
ICP algorithm [Ovsjanikov et al., 2012].

Procrustes analysis is a tool used to perform statistical study
of shapes by canceling transformations that are not shape-altering
[Kendall, 1984]. It has many applications in various fields of sci-
ence [Gower and Dijksterhuis, 2004] and in particular anatomical
shape analysis and morphometrics [Mitteroecker and Gunz, 2009;
Boyer et al., 2011]. There are many variants to the Procrustes prob-
lem, maybe the most general is the one addressed in this paper -
PM, for which no closed-form solution is known [Gower and Dijk-
sterhuis, 2004]. To our knowledge, we provide the first closed-form
convex formulation guaranteeing a globally optimal solution for the
exact and near-exact cases (under mild assumptions).



Semidefinite relaxation and polynomial optimization. Con-
vex relaxations of quadratic optimization problems are often (e.g.,
[Poljak et al., 1995; Luo et al., 2010]) preformed by replacing
quadratic terms with new variables. All quadratic terms then be-
come linear, and a convex semidefinite constraint is added to cou-
ple between the original variables and the new variables. A signifi-
cant drawback of these relaxations is that they are computationally
tractable only for very small polynomial problems. [Fukuda et al.,
2000; Waki et al., 2006] show that for problems with certain struc-
ture, a positive semidefinite constraint on a large matrix can be re-
placed by constraining certain principal submatrices to be positive
semidefinite, resulting in an equivalent problem with significantly
improved time complexity. In this paper we devise a quadratic for-
mulation of PM which has this structure, and as a result obtain a
relaxation which is tractable for medium sized problems.

3 Approach and Formulation

We present our convex relaxation of PM. We first discuss the gen-
eral quadratic optimization problem and present a novel strategy
for replacing its “standard” time consuming SDP relaxations with
an equivalent, but significantly more efficient SDP relaxation. In
this context, we then instantiate our relaxation for the PM problem.

Full SDP relaxation of quadratic problems. Quadratic opti-
mization problems are problems of the form

min
x∈RN

f0(x) (2a)

s.t. fs(x) = 0, s = 1, . . . , S (2b)
ft(x) ≥ 0, t = S + 1 . . . T (2c)

where fi are quadratic multivariate polynomials.

A typical relaxation procedure includes two steps (see [Luo et al.,
2010] for a survey on SDP quadratic relaxations): First, the
quadratic polynomials fi are linearized by introducing new vari-
ables Yij , 1 ≤ i, j ≤ N , which replace quadratic monomials xixj ,
so that fj(x) becomes a linear polynomial in the variables x, Y
denoted L[fj ](x, Y ). This gives an equivalent formulation of (2):

min
x,Y

L [f0] (x, Y ) (3a)

s.t. L [fs] (x, Y ) = 0, s = 1 . . . S (3b)
L [ft] (x, Y ) ≥ 0, t = S + 1 . . . T (3c)

Y = xxT (3d)

With the exception of constraint (3d), Problem (3) is a convex prob-
lem (in fact a linear program). Therefore, the second step in this re-
laxation procedure is replacing (3d) with a convex constraint. The
convex hull of the set defined by (3d) is the set defined by the con-
vex constraint Y � xxT , which is equivalent to the semidefinite
constraint [

1 xT

x Y

]
� 0. (4)

A natural relaxation of (3) is therefore given by replacing (3d) with
(4). [Zhao et al., 1998] and more recently [Kezurer et al., 2015]
used this approach to relax the quadratic matching and quadratic
assignment problems. The obtained relaxation is significantly more
accurate than prevalent relaxations for quadratic matching, but its
scalability is poor; in fact, it cannot handle more than a handful of
points to be matched, completely hindering some applications.

Efficient SDP relaxation. The key to a useful and efficient re-
laxation of (2) and consequently our problem (1) is to reduce the
dimension of the semi-definite constraint (4) which is the main fac-
tor determining time efficiency of the semidefinite program.

To obtain a more efficient SDP relaxation, we make the observation
that for some problems not all terms in the matrix xxT appear in the
polynomials fj . This is, for example, the case in the PM problem,
as will soon be shown. In such cases, we can find a collection J
of subsets of {1, . . . , N} so that all polynomials fj include only
expressions from xJx

T
J , J ∈ J . An equivalent formulation for

(3) can therefore be obtained by replacing (3d) with YJ = xJx
T
J ,

for all J ∈ J . In turn, replacing these with the convex constraints[
1 xTJ
xJ YJ

]
� 0, J ∈ J (5)

we obtain a convex relaxation for (2). If all subsets J ∈ J satisfy
|J | � N , the obtained relaxation is considerably more efficient
than the original (full) relaxation.

There is no unique way to apply this more efficient relaxation; a
given instance of a quadratic optimization problem may have sev-
eral different possible decompositions J . Those that use small
semidefinite constraints will be more efficient, but not necessar-
ily as accurate as those using larger semidefinite constraints; the
latter, however, can quickly become intractable for certain prob-
lems. Nevertheless, if J is chosen so that it satisfies the chordality
condition we will soon describe, the obtained relaxation is in fact
equivalent to the full relaxation.

In general, any solution for the full relaxation also satisfies (5). For
equivalency, we need to ensure that a solution for the efficient re-
laxation (5) can always be completed to a solution of the full relax-
ation. For that end we need to show there is a solution for the fol-
lowing matrix completion problem: We are given entries of xJ , YJ
satisfying (5), and we are searching for a completion of Y that sat-
isfies (4). Since the objective and linear constraints depend only on
the coordinates which were determined before the completion, the
full solution will also fulfill the linear constraints, and the objective
will not be affected by the completion.

The condition that allows solving the completion
problem is related to the structure of the known co-
ordinates of the matrix. The collection J defines
an undirected graph G = (V,E) whose vertices are
V = {1, x1, . . . , xN}. Two distinct vertices are con-
nected by an edge iff they both appear in one of the
matrices (5) defined by some J ∈ J . A graph G is
chordal if every (simple) cycle with more than three
vertices contains a chord, i.e., an edge between two
non-adjacent members of the cycle. For example the graph in the
top of the inset has a cycle which does not contain a chord and thus
is not a chordal graph. The bottom graph is chordal.

If G is chordal, the following theorem from [Grone et al., 1984]
guarantees that the matrix completion problem has a solution, and
therefore that the two relaxations are equivalent:
Theorem 1. If G is chordal, and (xJ , YJ)J∈J satisfy (5), then the
missing coordinates of Y can be chosen so that the full semidefinite
constraint (4) holds.

PM-SDP Formulation. We now return to the PM problem and
instantiate the strategy presented above. First, we note that PM can
be formulated as the following quadratic problem:

min
X,R
‖RP −QX‖2F (6a)

X1 = 1, 1TX = 1T (6b)

XjX
T
j = diag(Xj), j = 1 . . . n (6c)

RRT = RTR = I (6d)



where we denote by 1 ∈ Rn×1 the all-ones vector, by Xj the j-th
column ofX , and by diag(Xj) the diagonal matrix whose diagonal
entries are Xj .

To see this is indeed an equivalent formulation of PM, note that if
(R,X) is a feasible solution of (6), then R is orthogonal by defini-
tion. The constraint (6c) implies that X2

ij = Xij for all i, j, so that
all elements of X are in {0, 1}. By (6b) the rows and columns of
X sum to one, which implies that X is a permutation matrix.

In the other direction, note that if (R,X) ∈ O(d) × Πn, then
since each column of X has only one non-zero element, XjXT

j is
diagonal. Since all elements of X are in {0, 1}, X2

ij = Xij for all
i, j so that (6c) holds. It is straightforward to check that (6b),(6d)
hold as well.

All polynomials in (6) are quadratic in the entries of R and X .
The full SDP relaxation for quadratic problems described above
can then be applied; this will result in a vector x, consisting of the
elements of R and X , of dimension d2 + n2; the SDP constraint
will be of size (d2 + n2 + 1)× (d2 + n2 + 1).

We obtain an equivalent, more efficient, relaxation by utilizing the
efficient SDP relaxation approach; the key observation here is that
all the quadratic polynomials participating in the formulation (6) of
the PM problem can be expressed using linear polynomials in the
entries of XjXT

j , Xj [R]T , and [R] [R]T , where [R] ∈ Rd
2×1 is

the column stack of the matrix R and j = 1 . . . n. We therefore
introduce new matrix variables Zj , constrained to satisfy

Zj =

[
Xj
[R]

] [
Xj
[R]

]T
, j = 1 . . . n (7)

Let us next see how the objective and constraints of Problem (6) are
linear in the variables X,R,Zj . First, the objective of (6) can be
rewritten as

‖RP −QX‖2F =
∑
j

‖RPj −QXj‖22 =
∑
j

tr (WjZj)+const

for some constant matrices Wj since ‖RPj −QXj‖22 is linear in
the entries of Zj . Denoting

Zj =

[
Aj BTj
Bj C

]
, Aj ∈ Rn×n, C ∈ Rd

2×d2 , Bj ∈ Rd
2×n (8)

the constraint (6c) can be rewritten as Aj = diag(Xj). Finally, the
constraints (6d) are affine functions of C and can be rewritten as

tr(H`C) + b` = 0, ` = 1 . . . 2d2

for some constant matrices H`. Replacing the non-convex equality
constraint of (7) with convex semidefinite constraints of type (4),
we obtain our relaxation for the PM problem, PM-SDP:

min
Zj ,X,R

∑
j

tr (WjZj) (9a)

X1 = 1, 1TX = 1T (9b)
Aj = diag(Xj), j = 1 . . . n (9c)

tr(H`C) + b` = 0, ` = 1 . . . 2d2 (9d)

Zj �
[
Xj
[R]

] [
Xj
[R]

]T
, j = 1 . . . n (9e)

where Aj and C are defined as in (8).

Figure 2: The graph corresponding to the Procrustes Problem
(right, each disk represents a clique) is chordal, that is, has no min-
imal cycles of length at-least four. The adjacency matrix is shown
on the left.

Chordality of the relaxation. To show that (9) is equivalent to
the full relaxation of the PM problem, we need to show that the
graph G induced by J = {Jj} is chordal, where Jj is the set
containing the variables [R] and Xj . The adjacency matrix of G
for this case is illustrated in Figure 2 (left) where each gray square
represents a full block of ones; on the right, we illustrate the corre-
sponding graph G where each disk represents a clique which corre-
sponds to a diagonal block in the adjacency matrix. To show G is
chordal it is enough to show every cycle of length at-least 4 has a
chord: Indeed, if a cycle is completely contained in one of the sets
Jj (represented as triangles in Figure 2, right) then any two vertices
are connected by an edge; otherwise there are two non consecutive
visits to vertices in the 1, [R] cliques (top disks), and these vertices
are connected by an edge.

Dimension and complexity. We note that (9e) includes n
semidefinite constraints involving N × N matrices, where N =
d2 + n + 1, as opposed to the full relaxation which in this case
would involve a square matrix with N = d2 + n2 + 1. When the
number of points in the sets n is significantly larger than the di-
mension d of the space the point reside in (i.e., n � d), which
is often the case in point registration problems, PM-SDP will be
significantly more efficient than the full SDP relaxation.

Relaxation properties. The PM-SDP relaxation has the follow-
ing natural theoretical properties:

1. Rotation and relabeling invariance: Rotating or relabeling the
input shapes will not affect the solution provided by the relax-
ation. More precisely, if P is replaced with a point cloud P̃ ob-
tained from P by relabeling and applying an orthogonal trans-
formation, then the objective of PM-SDP remains unchanged,
and X,R transform accordingly.

2. Lower bound: Since PM-SDP is a relaxation its optimal objec-
tive is less or equal to the PM optimal objective. We denote the
objective of PM-SDP by d.

3. Positivity: The objective of PM-SDP is always non-negative.
This is natural since this is the case for the objective of PM .

4. Convex-hull of R,X: The R,X coordinates of a feasible solu-
tion for PM-SDP are in the convex hull of O(d)×Πn.

The proof of the these properties as well as the theorems presented
below are given in [Dym and Lipman, 2016].

Exact recovery refers to the problem of finding R,X ∈ O(d)×
Πn which solve the equation RP = QX , when such solutions
exists, i.e., when d(P,Q) = 0. We call such solutions exact solu-
tions. From the computational perspective, exact recovery for PM is



equivalent to exact graph matching. The latter is a well-researched
problem, not known to be polynomial. Accordingly, proving exact
recovery in full generality is not likely. However, under the assump-
tion that the covariance d×dmatrix PPT of the point cloud P has
a simple spectrum, and an additional weak assumption, we are able
to prove exact recovery. This too is analogous to the graph match-
ing problem where finding exact solutions for graphs with simple
spectrum affinity matrices is solvable in polynomial time [Babai
et al., 1982].

The assumption that PPT has a simple spectrum implies
that the symmetries of P are all reflections along the prin-
ciple axes of the point set P . In particular, it implies that
all symmetries of P are bilateral. The class of bilateral
symmetric shapes includes many important instances of
the shape matching problem. Note however, that not all
reflections along principle axes are necessarily symme-
tries of P . The additional weak assumption required for our exact
recovery with symmetries result formulated below is that there ex-
ists a point Pj in P such that its reflections along principle axes
belongs to P only for symmetries of P . The inset figure demon-
strates a shape with point having this property (blue); Applying a
horizontal flip, which is a symmetry, maps the point to another point
on the shape, while applying a (non-symmetry) vertical flip maps it
outside of the shape (red). We are not aware of bilateral symmetric
shapes of practical interest that do not satisfy this condition.

The exactness argument starts with assuming we are given P,Q
with d(P,Q) = 0 and showing that when d(P,Q) = 0 also
d(P,Q) = 0. This follows from relaxation properties 2 and 3 de-
scribed above: from the lower bound property we know that the
objective d of PM-SDP is a lower bound of the objective d of PM.
From the positivity property, d is always non-negative. It follows
that when d(P,Q) = 0 also d(P,Q) = 0, and the set of feasible
solutions of PM-SDP with zero objective, which we call the exact
convex solution set, is a superset of the set of exact solutions. When
the shapes are asymmetric, the exact convex solution set consists of
only one point - the exact solution,
Theorem 2. Let P,Q be asymmetric shapes with d(P,Q) = 0
satisfying the simple spectrum and weak conditions. Then PM-SDP
has a unique exact convex solution, which is also the unique exact
solution of PM.
When P,Q are bilateral symmetric, there are several exact solu-
tions. All convex combinations of these solutions will be in the
exact convex solution set, so that generally exact convex solutions
will not be exact solutions. However, by restricting ourselves to the
R coordinate of both the exact solutions and the convex exact so-
lutions, which we refer to as exact orthogonal solutions and exact
convex orthogonal solutions, we are able to show:
Theorem (Full version of theorem 2). Let P,Q be shapes with
d(P,Q) = 0 satisfying the simple spectrum and weak conditions.
Then the exact orthogonal solutions of PM are the extreme points
of the set of exact convex orthogonal solutions.
The set of exact convex orthogonal solutions is a convex set and
therefore its extreme points can be found by simply optimizing lin-
ear energies over this set (a convex problem again). One simple
algorithm for obtaining all exact solutions is repeatedly solving a
variation of our convex relaxation: minimize a random linear en-
ergy tr(WR), where W ∈ Rd×d is a random matrix drawn from
the uniform measure on the unit sphere, under the set of constraints
of (9), and adding the linear constraint that the objective (9a) is
zero. We prove,
Theorem 3. The random algorithm returns an extreme point of the
set of exact convex orthogonal solutions (i.e., an exact orthogonal
solution) with probability one. Moreover, all extreme points are
found with the same probability.

Once an exact orthogonal solution is found
it can be shown that the X coordinate of
the solution is guaranteed to be a permuta-
tion. The inset demonstrates the output of
the probabilistic algorithm described in the-
orem 3 on two point sets with perfect bilat-
eral symmetries sampled from a model of a
chair and a picnic table. The random algo-
rithm retrieves the two bilateral symmetries
of the chair, and the four bilateral symme-
tries of the picnic table.

4 Implementation details
We discuss implementation details of the PM-SDP algorithm.

Injective matching. We consider a slight variation of PM where
we allow the point cloud P to have fewer points than Q, and search
for the correspondence between P and a subset of the points of Q.
This formulation is useful to account for the inherent noise caused
from samplings of different shapes. Furthermore, in case the shapes
we wish to compare are not isometric, certain points on one shape
might not have a good match on the second one.

We denote the number of points of P by k ≤ n. The formulation
of PM in (1) remains unchanged, except now X ∈ Rn×k is con-
strained to be a matrix with entries in {0, 1} such that all columns
of X have exactly one non-zero entry. The only necessary modifi-
cation for PM-SDP is that the constraint X1 = 1 in (9) should be
replaced with the constraint X1 ≤ 1.

Utilizing priors for computational efficiency. The PM-SDP
framework allows incorporating priors to improve computational
complexity by further reducing the size of the SDP constraint. This
is done by noting that if we know or assume the points Pj and Qi
should not correspond then setting Xij = 0 reduces the size of the
SDP constraint by one. Indeed, returning to (7) we see that when
Xij = 0 we may also assume that the i-th row and column of Zj
are also zero. Similarly, if Rst = 0 we can eliminate a row and
column of Zj .

Let us demonstrate where this can be used for near-isometric match-
ing. We rule out unlikely correspondences using the average
geodesic distance (AGD) descriptor [Kim et al., 2011]. Corre-
sponding points on nearly isometric shapes should have roughly
the same AGD value since this descriptor is isometry-invariant. For
close to isometric shapes, we can safely rule out correspondences
between points whose AGD value is significantly different. If the
possibility ofQi corresponding to Pj , is ruled out, we setXij = 0.

For isometric shapes, the Laplace-Beltrami operator of both shapes
has the same eigenvalues, and the linear isometry R takes eigen-
functions of the first shape with eigenvalue λ to eigenfunctions of
the second shape with the same eigenvalue λ. In the most com-
mon simple spectrum case, this means that R is a diagonal matrix,
if the maximal eigenvalue multiplicity of the shapes is two then
R is tridiagonal, etc. For near-isometric shapes, we make the as-
sumption that R is m-diagonal, that is, has m non-zero diagonals
symmetrically around the main diagonal.

In practice, we use the AGD descriptor to rule-out 50-70% of the
correspondences, and constrain R to be 1,3, or 5-diagonal. Fortu-
nately, the effect of incorporating these priors on the quality of the
relaxation is negligible: Figure 3 demonstrates that using PM-SDP
to match shapes from SCAPE dataset (using the protocol that will
be described in Section 6) produces essentially equivalent results
with and without using the AGD descriptor to rule out unlikely
matches; the former, however, has the advantage of significantly
improved computational efficiency.
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Figure 3: Ruling out matches with the AGD descriptor has a neg-
ligible effect on the quality of the relaxation: (a) depicts the results
of PM-SDP on SCAPE dataset [Anguelov et al., 2005] with and
without AGD to rule out unlikely matches; (b) the objective after
local minimization; and (c) objective value achieved by PM-SDP.
The PM-SDP objective is lower for the unpruned version while the
rest of the results are equivalent for both versions.

Local minimization. Since the feasible set of PM-SDP is larger
than the feasible set of PM, the solution of PM-SDP in general
may not contain orthogonal and permutation matrices. We there-
fore project the solution onto the feasible set of PM. We do this by
locally minimizing PM using the output of PM-SDP to initialize
the algorithm. The local minimization is done using an ICP-like
algorithm which interleaves between minimizing over one of the
matrices R,X while holding the other constant: fixing R results in
a linear program, while for a fixed X there exists a closed-form so-
lution [Gower and Dijksterhuis, 2004]. In Figure 4 we illustrate the
doubly-stochastic matrix X as outputted from the PM-SDP relax-
ation and the permutation achieved after the projection. As shown,
the PM-SDP output is already very similar to the projection result
demonstrating the tightness of the PM-SDP relaxation. More de-
tails are in Appendix A.

The local minimization following the PM-SDP relaxation allows
generalizing Theorem 2 to the inexact case:
Corollary 1. Let P,Q be point clouds satisfying the conditions
of Theorem 2, and let P ε, Qε be sufficiently small perturbations of
P,Q. Then PM-SDP followed by the local minimization returns the
unique (global) solution of PM for P ε, Qε.

5 Evaluation

We test the tightness of the PM-SDP relaxation by comparing it to
the ground truth obtained from an exhaustive brute-force sampling
algorithm. The latter is only tractable for low dimensional d, and
we choose d = 3: The exhaustive algorithm densely samples ∼
10k points from a uniform distribution over O(3) and uses each
sample Rj as an initialization for the local minimization algorithm
described above.

In Figure 5 we compare the histograms of optimal values achieved
by the exhaustive sampling algorithm (in red) to the energy
achieved by PM-SDP (in blue). The data for this experiment was
created by randomizing Q ∈ R3×50 according to a uniform distri-
bution on [0, 1], and setting P = RTQX + ε, with X ∈ Π50, R ∈
O(3) and noise ε ∼ Nd×n(0, σ2). (a-d) show the results of a few
typical runs with increasing amount of noise σ = 0, 0.05, 0.1, 0.2.
We note that the number of local (sub-optimal) minima for the ex-
haustive sampling is surprisingly high; for example, for noise level
σ = 0.1 we found more than 1000 local energy minima. Addi-
tionally, the experiment in (a) verifies our theoretical exactness re-
sult as can be seen by the fact that the blue point achieves the left
most value of the red histogram. When the noise level is low to

Figure 4: Visualization of the doubly-stochastic map X as gener-
ated by the PM-SDP relaxation when comparing two SCAPE mod-
els; each pair of surfaces depicts a column of X by coloring the
point set Q according to the corresponding value in X; the X ma-
trix before and after projection on the permutations is shown at the
bottom-right.

medium (σ = 0.05, 0.1) the PM-SDP relaxation usually produces
optimal result, see (b-c). When noise level is high (σ = 0.2 in (d))
the relaxation does not provide an optimal solution but nevertheless
produces a close to optimal result.

A quantitative evaluation of the optimality of PM-SDP is given in
Figure 5, (e-f). We ran 80 random experiments for d = 3 and
d = 5 with noise level σ = 0.1 and measured the optimal objective
value achieved by PM-SDP in comparison to the global minimum
and median value of the objective values found by the exhaustive
algorithm. For visualization, we subtracted the value of the optimal
value from all of the results. PM-SDP (black line) usually returns
the optimal value (green) and always returns a better result than the
median objective value (blue) of the exhaustive algorithm.

6 Applications

6.1 Functional maps

The main application of our algorithm is non-rigid shape match-
ing of pairs of surfaces P,Q. Following [Ovsjanikov et al., 2012]
we pose this problem as a high dimensional PM problem, replacing
non-rigid isometries with linear isometries (orthogonal transforma-
tions) in higher dimensional space. More specifically, we sample k
points on the first shape and n points on the second shape uniformly
using farthest point sampling [Eldar et al., 1997] initialized with
extrema of average geodesic distance (AGD) [Kim et al., 2011],
and embed P,Q in Rd. The embedding is done by first comput-
ing the first d eigenfunctions of the cot-weight Laplace-Beltrami
(LB) operator [Pinkall and Polthier, 1993] on each of the surfaces,
{ΦPi }, {ΦQi }, i = 1 . . . d and then assigning the d coordinates
(ΦP1 (p), ..,ΦPd (p)) to each point p ∈ P , and similarly to every
point q ∈ Q.

Current approaches using this formulation, solve the resulting high
dimensional PM problem using an ICP-type iterative algorithm; as
this problem is shown to have a vast number of local minima even
for d = 3 (see Figure 5 (a-d)), initialization is crucial.
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Figure 5: PM-SDP tightness evaluation: (a-d) show the histograms
of the objective values achieved by the exhaustive sampling algo-
rithm compared to the optimal PM-SDP objective on a few typical
runs. When the noise level is low to medium, our algorithm usu-
ally finds the global minimum. On higher noise levels it returns
an objective value close to optimal. (e-f) show illustrations of the
deviation of the optimal PM-SDP objective value from the global
optimum and the median value computed by the exhaustive algo-
rithm when σ = 0.1, d = 3 and d = 5.

Using standard shape signatures or features often does not provide
a satisfactory initialization (e.g., Figure 1, (b-c)), and previously
this ICP procedure was initialized with matched segments for suc-
cessful results [Ovsjanikov et al., 2012; Pokrass et al., 2013]. In
the experiments of this subsection we use PM-SDP followed by lo-
cal minimization to initialize the ICP of [Ovsjanikov et al., 2012]
that uses the entire embedded models. In comparisons to previous
works we used code supplied by the authors with their default pa-
rameters.

SCAPE dataset. We evaluated the performance of PM-SDP for
non-rigid isometric matching using the SCAPE dataset [Anguelov
et al., 2005]. We used n = 100 sampled points, d = 17 eigen-
functions, and injective mapping of k = 50 out of n = 100 . For
better efficiency we allowed each point in P to be matched only to
the 30% of the points in Q that have the closest AGD, and selected
m = 5 (5 non-zero diagonals in R). The SDP optimization was
performed using Mosek [MOSEK, 2015]. We extended our results
to a full correspondence of all the vertices by solving ICP in dimen-
sion d = 30. The average running time for a pair with these settings
is 30-35 minutes on an Intel Xeon E5 CPU. We also tested a faster
version by taking d = 30 and using diagonal R, that is m = 1; this
gave only slightly inferior results with running time of 2.5 minutes
per pair.
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Figure 6: Results of our algorithm and state of the art algorithms
on the SCAPE [Anguelov et al., 2005] non-rigid shape matching
benchmark.

Figure 6 shows a comparison of our algorithm with several state
of the art algorithms. The comparison was done according to the
protocol of [Kim et al., 2011] accepting symmetries. Our method
compares favorably to functional maps (FM) when initialized with
matched segments [Ovsjanikov et al., 2012] and improves upon
FM with automatic shape signature initialization. We also show
in green the results of the faster, less accurate, variant of our algo-
rithm described in the previous paragraph. Figure 7 shows typical
results of our algorithm from this experiment.

FAUST dataset. We evaluated the performance of PM-SDP for
non-rigid non-isometric matching on the FAUST dataset [Bogo
et al., 2014]. We used a similar setup as in the previous experi-
ment, with the following differences: We generated the LB oper-
ator directly on the point cloud sampling generated by [Chen and
Koltun, 2015] using a similar construction to [Belkin and Niyogi,
2003] (weights based on geodesic distances instead of Euclidean
distances). We also used two versions of the PM-SDP: For the first
we chose d = 17, m = 5 and we allowed each point in P to be
matched only to the 40% points in Q that have the closest AGD;
the running time of this parameters set is about 40 minutes per pair.
For the second, faster parameter set, we used n = 40, k = 30, an
embedding with d = 10, m = 5, and kept 80% of Q for each point
in P ; the running time with these parameters is less than 4 minutes
per pair.

Figure 8 compares PM-SDP with the recent method of [Chen and
Koltun, 2015] which demonstrated superb state of the art results on
this dataset. However, they rely on the assumption that the shapes
are initially aligned in 3D and indeed use this alignment by adding
a regularization term. In order to make a fair comparison we dis-
abled this regularization term. When this term is removed, intrinsic
symmetries might be found by the algorithm. In order to account
for that we sampled a set of 52 ground truth points in each mesh,
and added the symmetric flip to the ground truth map. Aside from
that, we followed Chen and Koltun’s evaluation protocol (includ-
ing using their point clouds as stated above). As can be read from
the graphs, our algorithm (blue) compares favorably in both the in-
ter and intra class matching scenarios in terms of cumulative error
distribution and average error. We also show here a faster version
of our algorithm (green), which provides good results in a shorter
computation time. Figure 9 shows some typical results of our algo-
rithm for both inter and intra class matching.



Figure 7: Examples of typical maps obtained with PM-SDP on the
SCAPE dataset [Anguelov et al., 2005]. In all pairs: left mesh is
colored using a predefined color map; right mesh is colored ac-
cording to the correspondence. Bottom right: a failure case.

SCAPE dataset (raw scans). We further tested our algorithm on
the SCAPE original raw scans dataset [Anguelov et al., 2005] that
contain missing data, holes and noise. We used the same prepro-
cessing method of [Chen and Koltun, 2015] and ran our algorithm
with exactly the same parameters as on the FAUST dataset on the 71
pairs as defined in the benchmark of [Kim et al., 2011]. Figure 10
shows the cumulative error graph and a few typical results. We note
that also here we ran [Chen and Koltun, 2015] without the extrinsic
regularization term (in addition to the reasons stated above, for the
SCAPE dataset this prior is inappropriate due to its pose diversity).

SHREC07 dataset. We also ran PM-SDP (n = 100, k = 40)
on the highly non-isometric SHREC07 dataset [Giorgi et al., 2007].
On this dataset, PM-SDP achieved good results only on some of the
classes; Figure 11 demonstrates typical results from these classes:
the Ant, Teddy and Glasses.

6.2 Anatomical classification

The Procrustes distance with labeled points (i.e., whenX is known)
is a well-known measure of shape similarity in fields such as statis-
tical shape analysis [Kendall, 1984; Boyer et al., 2011]. The sam-
pling and labeling of points in a collection of shapes is tedious work
that requires the attention of an expert for several months [Boyer
et al., 2011]. The possibility of solving Procrustes matching with
unlabeled points (i.e., the PM problem in this paper) using PM-SDP
makes the task of finding meaningful landmarks unnecessary.
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Figure 8: Cumulative and average errors achieved on the FAUST
dataset [Bogo et al., 2014] by PM-SDP compared to [Chen and
Koltun, 2015] without the global extrinsic regularization term.

We took three anatomical bone datasets containing 116, 61 and
45 models respectively from [Boyer et al., 2011]. We sampled
n = k = 120 points of each shape using farthest point sampling,
ran PM-SDP and used its output to initialize ICP that matches 400
farthest points on the shapes. This computation takes about 7 min-
utes for each pair.

We followed the classification protocol suggested in [Boyer et al.,
2011] where each shape is classified according to its nearest (in
Procrustes distance) neighbor; each shape in the datasets has three
biological tags: Genera, Family and Above Family, and we tested
classification of all three categories. Table 1 presents classification
success rates (what fraction of shapes were correctly classified in
each classification test) and shows PM-SDP compares favorably to
Boyer’s method [Boyer et al., 2011], and is remarkably comparable
to the results achieved using human expert labeled landmarks. Fig-
ure 12 shows a few examples of maps that were found by PM-SDP.

6.3 Shape collection alignment

We demonstrate another application of PM-SDP to consistent align-
ment of shapes. The task we would like to solve here is the follow-
ing: given a set of semantically similar shapes - apply an orthogonal
transformation per shape so that the shapes are aligned. We solve
this problem by using PM-SDP to solve for pairwise orthogonal
transformations and permutations over the entire dataset and then
modifying the ICP procedure we mentioned in section 4 to project
onto the set of consistent orthogonal transformations; The details
of the projection procedure and definition of consistency are given
in appendix B. To demonstrate the flexibility of our approach, we
use a variation of the high dimensional embedding used above. We
embedded the shapes into a seven-dimensional space, the first three
coordinates being the euclidian x, y, z coordinates, and the other 4
were eigenfunctions of the LB operator (as was done for isomet-
ric matching above). Since the Euclidian coordinates should not
mix with the eigenfunction coordinates we constrain R to be block
diagonal.
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Figure 9: Examples of typical maps obtained with PM-SDP on the
FAUST dataset [Bogo et al., 2014]. Top row: intra-subject. Bottom
rows: inter-subject. Bottom right: a failure case.

As demonstrated in Figure 13 PM-SDP with d = 7 (second
row) yielded a better consistent alignment in comparison with the
method for d = 3. The shapes for this experiment are taken from
three classes of the SHREC07 [Giorgi et al., 2007] dataset. We
made sure the shapes are arbitrarily rotated, sampled n = k = 20
farthest points on each shape and solved for all pairwise matchings;
for d = 3 each pair is computed in 2-3 seconds and for d = 7 each
pair takes 15-20 seconds.

Timing. Timing of experiments that appear in the paper have al-
ready been stated. Here we provide quantitative timing experi-
ments. Figure 14 shows typical run times as a function of dimension
or number of points. The experiments were conducted on random
and noisy synthetic data. In experiment (a) the dimension d varies
from 3 to 20 and we match k = 50 points to n = 100 points.
Experiment (b) compares runtime versus the number of points: in
each experiment we match a k point point cloud to a n = 2k point
point cloud (up to k = 50, n = 100) and the dimension is constant
d = 10. In both cases, R was constrained to be 5-diagonal and we
allowed each point to be matched to 30% of the points in the other
point cloud based on prior knowledge (in this case these points were
selected randomly). (c) Shows comparison of the running time of
PM-SDP and the full SDP relaxation discussed in section 3. In this
case we use d = 10, k = n = 5 . . . 25. Notably, the full relaxation
becomes intractable for more than 17 point, whereas the equivalent
PM-SDP formulation solves these problems in just seconds.

Bottom view

Figure 10: Performance on the SCAPE raw scans dataset
[Anguelov et al., 2005]. Top left: Cumulative error distribution.
Other: Examples of typical maps obtained with PM-SDP . Bottom
right: a failure case (forward-backward flip).

Figure 11: Examples of maps obtained with PM-SDP on the non-
isometric SHREC07 dataset [Giorgi et al., 2007]. Bottom right: a
failure case (incorrect corresponding legs).

7 Conclusions
Summary. We have developed an algorithm that approximates
the global minimum of the PM problem with a proven exact re-
covery property in presence of bilateral symmetries, as well as sev-
eral other theoretical properties of the algorithm. We demonstrated
state of the art results for non-rigid isometric and near-isometric
shape matching problems solved using our convex relaxation. We
also showed that PM-SDP is useful for anatomical classification of
shapes and for aligning shape collections.

Limitations. In contrast to previous SDP relaxations of simi-
lar problems, we are able to deal with the registration of around
one hundred points. Nonetheless, in comparison with non-SDP
based approaches, the main limitation of this algorithm remains its
time complexity, which we predict will improve as research on SDP
optimization progresses; another limitation of our shape matching
framework is the fact that spectral embedding is aimed at near-
isometric matching, and is not a good model of the problem for
non-isometric shapes.

Future work. One direction we intend to pursue is applying our
technique for constructing efficient relaxations for quadratic opti-
mization to different problems other than PM. An interesting theo-
retical problem which we intend to pursue is proving that PM-SDP
(or similar relaxations) give a good approximation of the solution in
the general (noisy, far from exact) case, in contrast with our theoret-
ical analysis here which applies only for isometric or near-isometric
shapes. Extending to two-way partial matching is also interesting.



Dataset Classification PM-SDP Boyer et al. Expert
Genera 91.9 90.9 91.9

Teeth Family 94.3 92.5 94.3
Above Family 98.2 94.8 95.7

Genera 79.6 79.6 88.1
Metatarsal Family 93.4 91.8 93.4

Above Family 100 100 100
Genera 82.2 84.4 77.8

Radius Family NA NA NA
Above Family NA NA NA

Table 1: Classification results (accuracy) achieved by PM-SDP
on three anatomical shape data sets compared with [Boyer et al.,
2011] and a human expert.

Figure 12: Examples of typical maps that were obtained by PM-
SDP on the anatomical datasets of [Boyer et al., 2011]. First row:
Teeth; second row: Metatarsal bone; third row: Radius bone.
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Appendix A Local minimization

The local minimization can be initialized using the output of PM-
SDP in four different ways. Two immediate possibilities are given
by choosing the R or X coordinates from the optimal solution. We
note that R,X may not be in O(d) × Πn, but as mentioned pre-
viously they are in the convex hull of that set. Two other pos-
sibilities can be obtained from decomposing the lifted variables
Bj as explained next. When (7) holds, we can use (8) to write
Bj = [R]XT

j . We can then combine the matrices Bj into a larger
matrix B so that B = [R] [X]T , and X,R can be recovered in this
case by factorizing B into an outer product of two vectors. Moti-
vated by this, we do the following:

1. Create the matrixB using the matricesBj : B = [B1, ..., Bk].

2. ProjectB onto the set of rank one matrices using SVD, denote
the projection as B̂.

3. Factorize the projected rank-one matrix as an outer product
of two vectors B̂ = [R̂][X̂], and use these vectors as another
two possible initializations of R and X .

Appendix B Collection alignment

In this section we present the collection alignment algorithm men-
tioned in sub-section 6.3 . First we solve PM for each pair of shapes
in the collection with the additional constraint thatRij is in the con-
vex hull of SO(3) using the formula from [Saunderson et al., 2014].
Then, we build a large matrixR containing all the orthogonal trans-
formations obtained by PM-SDP as sub-blocks. More specifically,
each d× d block in the (i, j)-th position is the orthogonal transfor-
mation between shape i and shape j. In case the set of transforma-
tions is consistent (i.e., for each i, j, k, Rij · Rjk = Rik ) , R is
positive semidefinite and has rank d (for the definition of consistent
maps and orthogonal transformations see [Singer and Wu, 2012;
Huang et al., 2014; Nguyen et al., 2011]).

In the spirit of this observation, we feed this matrix into a an itera-
tive ICP-like algorithm that performs the following steps:

1. Project R onto the set of consistent rank d matrices: Let
UDUT be the eigen-decomposition of R, we take the largest
d eigenvectors of U scaled by the square root of the corre-
sponding eigenvalue, which we denote Ud and project each of
its d × d block to its closest orthogonal matrix. Denote the
matrix with the new blocks as U ′d then the output of this step
is R′ = U ′d(U

′
d)
T .

2. For each block of R′ solve for the best permutation Xij using
linear programming as described in section 4 .

3. For each permutation Xij solve for the best orthogonal trans-
formation using the closed form solution mentioned above.

4. Construct R from the matrices Rij .

5. Iterate until convergence.

Our experiments show that this algorithm reaches a steady state
after a few iterations that take a few seconds for the problems in
Subsection 6.3.


