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Abstract—The general problem of defining and determining the
sample distribution in the case of continuous-parameter random
fields is addressed. Defining a distribution in the case of determin-
istic functions is straightforward, based on measures of sublevel
sets. However, the fields we consider are the sum of a determin-
istic component (nonrandom multidimensional function) and an
i.i.d. random field; an attempt to extend the same notion to the sto-
chastic case immediately raises some fundamental difficulties. We
show that by “uniformly sampling” such random fields the difficul-
ties may be avoided and a sample distribution may be compatibly
defined and determined. Not surprisingly, the obtained result re-
sembles the known fact that the probability distribution of the sum
of two independent random variables is the convolution of their dis-
tributions. Finally, we apply the results to derive a solution to the
problem of deformation estimation of one- and multidimensional
signals in the presence of measurement noise.

Index Terms—Continuous parameter random fields, law of large
numbers, sample distribution, uniformly distributed sequences.

I. INTRODUCTION

E VALUATION of the distribution function of a given
function is a well known procedure when the functions,

whether deterministic or random, are defined on a discrete one-
or multidimensional lattice. However, there are applications
and problems where the setting of the physical model and of
the resulting estimation algorithm involve the evaluation of
the sample distribution over some continuous domain. When
the domain over which the observations are defined is some
subset of many potential difficulties arise in analyzing the
properties of the sample distribution of the random process.

To clarify the notion of sample distribution considered in this
paper, let us first consider the case of nonrandom (i.e., deter-
ministic) functions. Given a measurable deterministic function

, it is straightforward to define its distribution in
terms of measures of the sublevel sets

, . More specifically, let denote the space of
bounded, compactly supported, Lebesgue measurable functions
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from to . Let denote the Lebesgue measure on the -di-
mensional Euclidean space . We define the transformation
on by

(1)

where denotes the support of the function .
As shown in the next section, the transformation plays the

role of a distribution transformation: it maps a deterministic
function to , a single variable distribution func-
tion. may be thought of as the “continuous cumulative his-
togram” of the function ; it describes the “relative cumulative
frequency” of the range of the function , in terms of measures
of its sublevel sets.

The interest in rigorously analyzing the properties of the oper-
ator and of the resulting distribution function goes beyond
a mere theoretical interest. In fact, the study presented in this
paper was motivated by the problem of matching (or finding the
correspondence between) two related observations on the same
object, that is, the problem of transformation estimation and its
applications to signal registration, see Section IV.

Next, suppose that takes the additive model form

(2)

where is a known deterministic function and
is a real-valued i.i.d. random field with a

known distribution function .
Random fields of the type (2) commonly represent noisy sig-

nals over a continuous domain, where one continuously mea-
sures some continuous physical quantity; the additive random
component represents the overall measurement noise, usually
due to the measurement procedure.

Fields of the type (2) are not identically distributed; moreover,
their probability distribution function is location dependent, i.e.,
they are not, in any sense, stationary. However, one may still
expect the sample distribution of to hold information on both
the deterministic and random components. Hence, the question
of determining this sample distribution is an interesting problem
on its own.

Intuitively, since is the sum of two independent compo-
nents, one may expect that by employing , we can establish
a law of large numbers to yield , where is the
probability density function of . However, the transformation

may not be directly applied to a field of the type (2), due to
inherent measurability difficulties, to be soon discussed. That
being the case:
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The question addressed in this paper is whether the
“sample distribution” of a random field of the type (2) may
be defined, such that it has analogous properties to those
introduced by the transformation .

Of course the sample distribution of may be defined in many
ways. However, we pursue a definition that preserves the prop-
erties of , elaborately discussed in Section II, and lets us es-
tablish a sensible law of large numbers.

However, as explained below, considering the sample dis-
tribution or, in general, laws of large numbers in the case of
continuous-parameter random fields with mutually independent
random variables raises severe measurability difficulties. Such
i.i.d.-driven random fields are not measurable in the usual sense,
and thus, the notion of sample distribution, as introduced by ,
is ill-posed and has to be properly redefined. Indeed, in this
case, the conditions of independence and joint measurability
are incompatible with each other; in fact, the set of realiza-
tions whose corresponding sample-functions (sample-paths) are
Lebesgue measurable is a nonmeasurable set [1], [2]; moreover,
its inner and outer measures are zero and one, respectively. Fur-
thermore, in [2], Judd showed that, even if the sample-measur-
ability problem is avoided (by a proper completion of the mea-
sure), laws of large numbers may not hold; the set of realiza-
tions where the laws of large numbers hold is again not mea-
surable. Therefore, the Lebesgue measure offers no basis for a
meaningful concept of the mean or the sample-distribution of a
sample function.

Let us demonstrate the above measurability problem by
giving the following nonformal example (see [3] for exact
details). Suppose that is a collection of
independent and identically distributed random variables with a
common finite mean . One would like to have
almost surely. Assuming this is true, it is then natural to expect
that will almost surely hold for every

. This, however, implies that must essentially be
trivial, as almost everywhere ([3]).

Questions related to a continuum of independent and iden-
tically distributed random variables and corresponding laws
of large numbers (e.g., sample-distribution) have evidently
gained some interest, especially in economic theory, where
various mass economic phenomena are modeled and studied,
for example [2]–[5]. For example, in [3], a Riemann-like ap-
proach is invoked to integrate the sample function; then, laws of
large numbers are obtained by using an -norm convergence
criterion. In another approach, large economies are modeled
by hyperfinite processes which are measurable with respect to
Loeb product spaces, and corresponding laws of large numbers
are derived (see [4] and the reference therein).

In this paper we present an approach in which the desired
continuous structure of the deterministic component is main-
tained while avoiding the measurability difficulties attributed to
the random component . In Section II we redefine the sample
distribution transformation in terms of “uniform sampling”; the
deterministic case, in which this transformation reduces to ,
is discussed. In Section III the stochastic case is discussed; the
sample distribution of the random field is determined in terms
of the sample distribution of the deterministic component and
of the probability distribution of the random field . Not sur-

prisingly, the result we obtain resembles the known fact that the
probability distribution of the sum of two independent random
variables is the convolution of their distributions. Finally, in
Section IV we demonstrate an application of the results to de-
rive a solution to a registration problem in the case where the
observation is subject to an additive noise.

II. DISTRIBUTION TRANSFORMATION OF A

DETERMINISTIC FUNCTION

We begin by defining the three basic transformations we shall
discuss.

Let be a given sequence of points in . For
any function let us define the family of transfor-
mations by

(3)

where denotes the cardinality of the set . Furthermore,
whenever the limit exists for all , we

define by

(4)

Recall that the transformation on has already been
defined as

(5)

Notice that it also admits the following equivalent integral form:

(6)

where denotes the indicator function of the set and de-
notes the composition of functions.

The next simple lemma shows, as aforementioned, that the
transformation plays the role of a distribution transformation.
It also shows some of its properties with respect to certain right-
(RHS) and left-hand side (LHS) compositions.

Lemma 1 ([6]): Let be a bounded, compactly
supported, Lebesgue measurable function from to . Then,

(i) The function is a distribution function.
Furthermore, the support of the distribution is
bounded, in the following sense:

a. for .
b. for .

(ii) is invariant under RHS affine compositions:
for any nonsingular affine transfor-

mation .
(iii) for any strictly increasing

continuous function such that .

The above properties play an important role in the analysis of
various applied problems, as will be demonstrated in Section IV.

A. Uniformly Distributed Sequences

To proceed, we introduce some basic definitions and re-
sults from the theory of uniform distribution of sequences
(also known as equidistribution of sequences) [7]. For
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and in , we say
that if for all . Define the -di-
mensional rectangle as the set . Using
the notations and , the rectangle

is the -dimensional unit cube.

Definition 1 ([7]): The sequence is uni-
formly distributed in with respect to the Lebesgue mea-
sure (abbreviated -u.d.) if

for all .

That is, in simple terms, the proportion of terms falling in any
subrectangle is proportional to its volume.

Remark 1: Many constructive examples of -u.d. sequences
in exist [7]. In fact, u.d. sequences are natural in the
sense that a sequence of realizations of a uniformly distributed
random variable is almost surely a -u.d. sequence (an imme-
diate result of the strong law of large numbers). A generalization
of the construction of u.d. sequences to is straight-
forward.

The following characterization of -u.d. sequences is given
in [7]: a sequence is -u.d. in if and only if for
every Riemann integrable function on

Remark 2: This characterization cannot be generalized to
Lebesgue measurable functions since, in general, the Lebesgue
integral cannot be determined by the values of a function on any
countable set of points.

We would like to expand the notion of -u.d. sequences to
nonrectangular subsets of . In order to do so, let us briefly
introduce the Jordan measure through the following characteri-
zation. Let be a bounded set; the following are equiv-
alent [8], [9]:

(i) is Jordan measurable.
(ii) , the indicator function of , is Riemann integrable.

(iii) , that is, the boundary of is of Lebesgue
measure zero.

Whenever a set is Jordan measurable, its Jordan measure (also
called Jordan content) is exactly its Lebesgue measure. It should
be noted that the Jordan measure is a weak notion of measure,
since it is simply the restriction of the Lebesgue measure to the
ring of bounded Lebesgue measurable sets having boundary of
measure zero. Nevertheless, it is shown in [9] that the Riemann
integral can be defined in terms of Jordan measure in about
the same way that the Lebesgue integral is defined in terms of
Lebesgue measure. Therefore, since -u.d. sequences are char-
acterized in terms of Riemann integrable functions, the natural
nonrectangular subsets of to consider in this context are
Jordan measurable sets.

Throughout, whenever we let be a compact, Jordan
measurable subset of , we also assume it is of a positive
measure.

Definition 2 ([7]): Let be a compact, Jordan mea-
surable subset of . A sequence is -u.d. in
if

for every Riemann integrable function with .

Remark 3: By using Definition 2, it is easy to see that the
-u.d. property of a sequence is preserved under nonsingular

affine transformations: let be a nonsingular affine transfor-
mation of ; is -u.d. in if and only if
is -u.d. in .

To complete the definition of -u.d. sequences in nonrectan-
gular subsets of , we must validate that such sequences exist,
as the next lemma asserts.

Lemma 2: Let be a compact, Jordan measurable
subset of . There exists a -u.d. sequence in .

Proof: Without loss of generality we assume that
; otherwise, choose to be a nonsingular affine transfor-

mation of such that and use Remark 3.
Let be a -u.d. sequence in . Define the subse-

quence recursively: and
, . That is, is the

maximal strictly increasing subsequence such that for
all . Notice that since is of positive measure, is finite for
every , and thus, is well defined. We will prove that
the subsequence is -u.d. in .

Let be a Riemann integrable function with .
Since , we have for ,
hence

(7)

for all . By the construction of , exactly of the first
elements of belong to . Hence, with denoting

the characteristic function of , for all we have

Notice that and thus implies . Since
is Jordan measurable, the function is Riemann integrable so
that we can use the -u.d. property of in to obtain

Using the same property of again, we obtain
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Substituting into (7) yields

(8)

Since (8) holds for any Riemann integrable function with
, the sequence is -u.d. in .

B. On the Transformation

Next, we elaborate on the relationship between the transfor-
mation and the transformation , defined in (4). In order
to do so, we restrict the discussion to a better behaved class of
functions.

Given a function , define
. Denote

That is, is the subset of of Riemann integrable
functions that also have Jordan measurable sublevel sets, re-
stricted to its support.

It should be noted that the additional requirement that
is Jordan measurable for all is not very strong. In [9] it is shown
that given a Riemann integrable function , for all except at most
a countable number values of , the subsets are Jordan
measurable. That, in turn, implies that if is not Jordan
measurable for some then, for arbitrarily small , the set

has a boundary of a
positive measure. Hence, Riemann integrable functions that do
not comply with the above requirement are, roughly speaking,
irregular.

Moreover, from an applied point of view, restricting the dis-
cussion to imposes no significant practical limitations
being “rich” enough to describe any sampled physical signal.

Lemma 3: Let be a compact, Jordan measurable
subset of and be a -u.d. sequence in . For all

with we have

(9)

If, in addition, assumes only finitely many values, then for all
we have

(10)

Proof: Since , the set is Jordan mea-
surable for all . Equivalently, the function is Rie-
mann integrable on U for all , as on .

Therefore, the -u.d. property of the sequence may be
applied to obtain

Hence, the first part of the claim is proved. Denote by
the values assumes under the finite range

assumption. Obviously, (10) holds for .
Using (9), for , , we find that

where is arbitrarily set to be less than , which completes
the proof.

Thus, for a proper selection of , the transformation
can be calculated by means of on the well-behaved
class of functions .

III. DISTRIBUTION TRANSFORMATION OF THE

ADDITIVE MODEL

So far, we have discussed the properties of a family of distri-
bution transformations when applied to deterministic functions.
In this section, we discuss the random case: we begin with the
results of applying the transformations and to a
random field; then, we return to discuss the problem of the ad-
ditive model stated in the beginning of the paper and derive our
main results.

Let be a real-valued i.i.d. random field
on with a known probability distribution function .
Let be a given sequence of distinct points in . The
transformation can now be applied to . Put

is known as the empirical distribution function of
. For fixed , is a random variable (of the

implicit variable ). For a realization of the random field (i.e.,
fixed ) the function is a distribution function as it is
an increasing step function jumping by at each point .

In this context, the Glivenko-Cantelli theorem [10] can be
rephrased to state what follows.

a.s., uniformly in , that is,

with probability 1.

Therefore, in terms of the transformations we have previously
defined, with probability 1.
Hence, for any sequence of distinct points the
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transformation is a strongly consistent nonparametric es-
timator for the probability distribution function of the random
field .

Now, suppose that takes the form

(11)

where is a deterministic function and
is a real-valued i.i.d. random field with distribution

function .
Let and be a -u.d. sequence of dis-

tinct points in (such sequence exists, according to Lemma 2).

Proposition 1: If assumes only finitely many values
, then

uniformly in . Moreover, is almost surely independent
of the choice of as the RHS of the equation is.

Proof: By the definition of

(12)

for all and all . Since assumes finitely many values, the
RHS of (12) decomposes into a finite sum

(13)

Without loss of generality, we may assume there exists an
such that the sets are nonempty
for ; otherwise, the empty terms in (13) may be
excluded. Hence, for , each term of the sum on the RHS
of (13) may be written as a product of two factors

where we denote

and

Notice that is a deterministic sequence, while
is a sequence of random processes. With these

notations

Now, since the conditions of Lemma 3 are satisfied

for . Denote the limit . Also,
notice that

where is a strictly increasing subsequence of indices
such that for every . Since the discrete-parameter
random process and any of its subse-
quences satisfy the conditions of the Glivenko-Cantelli theorem,
it can be invoked to show that

uniformly in , for every . Finally, since with prob-
ability 1 we have

the limit exists almost surely for
all , and we find that

uniformly in , which concludes the proof.
In the special case, where the random field

has an absolutely continuous probability distribution, we have
the following result.

Theorem 1: Let be the probability density function of the
random field . Then, the limit
exists, and

Furthermore, this equality also holds in -norm,
.

Proof: We split the proof into two steps. First, we prove
the assertion for that only assumes finitely many
values. We then extend the result to an arbitrary .
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Notice that for all ,
so that, from Proposition 1

(14)

with probability 1. Since ,
we have

(15)

Clearly

(16)

Substituting (16) into (15), we obtain

almost surely. Finally, since is a -u.d. sequence in ,
Lemma 3 implies that , and therefore

(17)

Thus, the assertion is proved, given that is also a
simple function, that is, only assumes finitely many values.

Next, we extend this result to an arbitrary by
means of approximation from below and from above.

Let , . It is easy to see that is a
sequence of simple functions in such that and

pointwise. Importantly, this also implies that

(18)

pointwise, for all . This important property is simply due to the
left continuity of and the fact that .

Similarly, let , . Then, is a sequence
of simple functions in such that and

pointwise. In this case, however, a property similar to (18)
is not guaranteed. Namely, fix , , and examine

as ; three possible cases arise: (i) if
then for

all ; (ii) if then there exists some such that
for all ; (iii)

if then

for all . Hence, a problem may occur for values of such that
has a positive measure. This problem, however,

is simple to rectify since has zero measure for
all except at most a countable number values of . Let be
the values of for which has a positive measure,
and define

.

Clearly, is a sequence of simple functions in such
that and pointwise. Moreover

(19)

for all .
Recall that , and similarly denote

and . Since and assume only finitely many

values, (17) implies that there exist subsets , ,
, of measure one such that

(20)

and

(21)

Denote

so that, is again of measure one, being a countable intersec-
tion of sets of measure one. Now, fix (i.e., fix a realiza-
tion of ). Since , we also have . This
inequality implies that

, and therefore

Taking gives, for every

(22)

We shall show that and tend to the same limit
as .

Notice that, by using Lemma 3 and the integral form of , we
have
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Recall that satisfies a.e.
for all . Hence, Lebesgue’s bounded convergence theorem may
be employed to show that

for all . That is, we have

Since and is integrable,
the dominated convergence theorem may used to show that

for all .
Last, we evaluate (20) as to conclude that

(23)

Similar derivations show that

(24)

Thus, by taking the limit in (22), we can conclude that
the limit exists and

for all . Moreover, notice that since both and
are distribution functions bounded by 1, we have that for all

,

Therefore, by using Lebesgue’s bounded convergence theorem,
we may also conclude that

in -norm, , for all , which completes the
proof.

IV. A SIGNAL REGISTRATION APPLICATION

Consider the problem of matching (or finding the correspon-
dence between) two related observations on the same object.
Throughout, objects are single physical entities represented by

Fig. 1. Illustration of the problem description (25), where different nonlinear
mappings are associated with each of the color channels of the image.

functions; for example, a pulse (in radar), an isolated word (in
speech analysis), an isolated image (in computer vision), etc.
Thus the same fundamental problem is common to various ap-
plications. We elaborate here on a special case of the general
problem, where the domain is transformed by an affine trans-
formation of ; this case is basic and provides a “first-order”
approximation to more complex cases. In this case, a more prac-
tical formulation of the (affine) domain registration problem is
the following (see Fig. 1 for an illustration).

Let be an unknown strictly increasing con-
tinuous function that vanishes at 0; let be
an unknown nonsingular affine transformation of ; and
let be a real-valued i.i.d. random field
with a known probability distribution function . Given a
known function , representing a signal, and a
single measurement (observation) of the form

(25)

find an estimate for and .
In this formulation, the function represents the overall

global amplitude nonlinearities in the measuring process (typ-
ically due to the nonlinear characteristics of the source, the
sensing device itself, amplifiers, etc.); the random component
represents the overall measurement noise, modeled as a random
field with mutually independent and identically distributed
random variables.

For example, in a simplistic radar model (25) becomes
, where is the transmitted pulse

signal, and are related to the target velocity and range (due
to the Doppler effect and the propagation time), represents
the nonlinearity of the receiver, and is the measurement noise.
Alternatively, in image formation terminology, the model (25)
describes the case where the global variability associated with
the observation is both geometric and radiometric. Observa-
tions on an object are assumed to simultaneously undergo an
affine transformation of coordinates and a nonlinear mapping
of the intensities (e.g., due to the recording device). Hence, (25)
is the complicated problem of jointly estimating the, seemingly
strongly coupled, left- and right-hand compositions and
[6], [11].

To demonstrate the usability of the distribution transforma-
tion, , let us first consider the noiseless case, that is, where
(25) holds with . Let us also assume that .
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In this case, the transformation may be applied to (25). Using
Lemma 1 we immediately find that

(26)

Hence, has converted the joint problem (25), in the unknowns
and , to a “new” problem in a single unknown, .
In order to obtain a parallel result with respect to , let us

define an auxiliary operator on by

By applying to (25), using (26) and since , we have

(27)

where the before last equality holds since is constant
over all of . Hence, (which has been defined in terms of

) has converted the joint problem (25), in the unknowns
and , to a “new” problem in a single unknown, . Moreover,
one may solve for the unknowns and by solving linear
systems of equations [12], [13].

As mentioned in the introduction, is not properly defined
in the case where does not vanish in (25). We were therefore
interested in determining whether the sample distribution of
may be defined, such that it has analogous properties to those
introduced by the transformation .

This question is answered by Theorem 1; under the assump-
tions that and that admits a
probability density function , we may conclude the following.

Corollary 1: Let and be -u.d. sequences
of distinct points in and , respectively,
then

(28)

Notice that (28) is the stochastic-case analog to (26), and in-
deed reduces to it as approaches the Dirac delta. Hence, in
order to estimate the left-hand composition , the original sto-
chastic registration problem can be replaced, with probability
one, with a “new” deterministic problem. This deterministic
problem has the form of a “classic” deconvolution problem. So-
lution of the deconvolution problem reduces (28) to the form
(26) derived for the noise-free case. Having estimated , (25)
may be reformulated and solved as a registration problem of
strictly the domain (i.e., geometry). As indicated above, this
problem has an explicit solution.
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